The BIRD Recommendation on the Use of Ivermectin for Covid-19

Proceedings and conclusions of the British Ivermectin Recommendation Development meeting held on the 20th February 2021 in Bath, United Kingdom.
Table of Contents

Acknowledgements ... 1
The BIRD Ethos .. 3
Executive summary .. 4
GRADE† DECIDE Evidence-to-decision framework .. 8
 A. The priority questions ... 8
 B. Assessment of the evidence .. 11
 1) Effects .. 11
 2) Resources ... 27
 3) Equity .. 31
 4) Acceptability ... 34
 5) Feasibility ... 36
 C. Conclusions ... 40
 D. Evidence Profile .. 44
 E. References .. 49
 Annex 1. Forest plots ... 56
 Annex 2. Real world evidence ... 66
 Annex 3. Ivermectin prophylaxis and treatment protocols in use 73
 Annex 4. Outline of the British ivermectin recommendation development (BIRD) process .. 75
 Annex 6. British ivermectin recommendation development participants 86
 Annex 7. Declaration of interests of participants .. 93
 Annex 8. Summary of BIRD recommendation development panel judgements 96
 Annex 9: Ivermectin API suppliers ... 102
 Annex 10. Endorsement of the british ivermectin recommendation* 104
Acknowledgements

This British Ivermectin Recommendation Development (BIRD) panel recommendation is the product of a collaborative philanthropic effort, involving an international group of health professionals, covid-19 patients and members of the public, for the greater good of humanity. The Evidence-based Medicine Consultancy Ltd, Bath, United Kingdom, which co-ordinated the effort, gratefully acknowledges the contributions that many individuals have made to this recommendation.

Mr. Andrew Bryant, Dr. Ketan Gajjar, Dr. Tess Lawrie, Dr. Scott Mitchell, Dr. Claire Mock-Muñoz de Luna, Dr. Tina Peers, Dr. Tony Tham were the members of the BIRD Steering Group that managed the recommendation development process.

The members of the BIRD Recommendation Development Panel included Prof. Jose Luis Abreu Quinter (Mexico), Dr. Gustavo Aguirre-Chang (Peru), Prof. Olufemi Babalola (Nigeria), Prof. Ira Bernstein (Canada), Dr. Mark Bradley (UK), Dr. Tau Braun (USA), Prof. Hector Eduardo Carvallo (Argentina), Dr. David Chesler (USA), Ms. Emma-May Chitty (UK), Dr. Christine Clark (UK), Mr. Ian Clayton (UK), Mr. Roger Felber (UK), Mr. Kenneth Finlayson (UK), Dr. Edmund Fordham (UK), Dr. Yasmin George (UK), Dr. Marie Gerval (UK), Dr. Martin Gill (South Africa), Mrs. Jane Green (UK), Dr. Rebecca Hall (UK), Mrs. Sally Harrison (UK), Dr. Jennifer Hibberd (Canada), Dr. Vicky Hildreth (UK), Dr. Shaun Hiu (UK), Prof. Justus Hofmeyr (South Africa/Botswana), Dr. Wendy Hoy (Australia), Dr. Christopher Hughes (UK), Ms. Juliet Johnson (UK), Dr. Rosemond Jones (UK), Dr. Denise Kelly (Ireland), Prof. Pierre Kory (USA), Dr. Allan Landrito (The Phillipines), Dr. Michael McConville (Ireland), Dr. Abbi Lulsegged (UK), Dr. Shashikanth Manikappa (Australia), Mr. Gavin McKinley (UK), Mr. Gez Medinger (UK), Dr. Eunice Minford (UK), Prof. Biswa Mohan Padhy (India), Mr. Antoine Guérin de Montgareuil (France), Dr. Arabella Onslow (UK), Ms. Jessica Peers (UK), Ms. Agnes Pinnel (Hungary), Ms. Linda Rae (UK), Prof. Linda Raspon (Canada), Dr. Jill Rasmussen (UK), Ms. Margarita Reygan (UK), Dr. Jon Rogers (UK), Mr. Jon Spiteri (UK), Mr. Chris Street (UK), Emeritus Prof. Geoffrey Taylor (Australia), Dr. Robert Taylor (UK), Ms. Seema Taylor (UK), Prof. Hannah Vowles (UK), Dr. Deborah Waller (UK), Dr. Marc Wathelet (Belgium), Dr. Robert Watkins (UK), Prof. Morimasa Yagisawa (Japan), Mr. David Rose
(UK), and Dr. Michael Yeadon (UK). Emeritus Prof. Jim Neilson served as Chair of the BIRD Recommendation Development Panel.

We would also like to thank the Technical Working Group including Mr. Andrew Bryant, Mr. Juan Chamie, Dr. Therese Dowswell, Dr. Edmund Fordham, Dr. Tess Lawrie, Mr. Mark Lawrie, Dr. Claire Mock-Muñoz de Luna, and Miss Isabella Rushforth. Grading of the evidence was performed by Mr. Andrew Bryant and Dr. Therese Dowswell. Dr. Sarah Hill provided the evidence on resources and cost-effectiveness. Dr. Edmund Fordham provided the Annex on ivermectin protocols in use. Dr. Tess Lawrie drafted the evidence to decision framework and the final recommendation document with input from the BIRD Steering Group and the Technical Working Group.

No funding was received for this work.
The BIRD Ethos

The ethos of the BIRD process is that of scientific rigour and transparency in the spirit of international collaboration towards a common goal – that of saving lives.

“Research is essential in the context of public health emergencies. The primary purpose of such research is to advance public health, prevent illness and save lives. Every researcher that engages in generation of information related to a public health emergency or acute public health event with the potential to progress to an emergency has the fundamental moral obligation to share preliminary results once they are adequately quality controlled for release. The onus is on the researcher, and the funder supporting the work, to disseminate information through pre-publication mechanisms, unless publication can occur immediately using post-publication peer review processes.”

Executive summary

Introduction

A global health emergency that causes significant mortality and morbidity with serious economic and societal consequences is of the highest priority. Global deaths from covid-19 have reached 2.4 million. No specific treatments are recommended for routine use in all covid-19 infections, and while the population of developed countries will eventually be given the choice of having a vaccine, this choice may not be afforded to people in low- and middle-income countries (LMICs) for a long time.

The antiparasitic medicine ivermectin, which is widely available in LMICs, has been tested in numerous clinical trials of prevention and treatment of covid-19 with promising results. A large body of evidence on ivermectin use in covid-19 had thus accumulated, which required urgent review by health professionals and other stakeholders to determine whether it could inform clinical practice in the UK and elsewhere. More specifically, answers were needed to the following priority questions: (i) For people with covid-19 infection, does ivermectin compared with placebo or no ivermectin improve health outcomes?, and (ii) for people at higher risk of covid-19 infection, does ivermectin compared with placebo or no ivermectin improve health outcomes?

On the 20th of February 2021, the British Ivermectin Recommendation Development (BIRD) meeting was convened in Bath, United Kingdom, to evaluate the evidence on ivermectin use for the prevention and treatment of covid-19. Evidence to address the priority questions was evaluated by a panel of clinical experts and other stakeholders in the form of a DECIDE evidence-to-decision framework, the gold standard tool for developing clinical practice guidelines.

Target audience

The recommendation in this document are aimed at informing national- and local-level health policies and clinical protocols on covid-19 prevention and treatment. As such, the target audience includes national and local policymakers, health care professionals, implementers, patients and the public.
Recommendation development methods

This recommendation on ivermectin for covid-19 was developed using the standard procedures for guideline development as described in the World Health Organization Handbook for Guideline Development (2014). Briefly, these procedures include: (i) Identification of priority questions and outcomes; (ii) Evidence retrieval and synthesis; (iii) Assessment of the evidence; (iv) Formulation of the recommendation; and (v) Planning for implementation, dissemination, impact evaluation and updating. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach for quantitative evidence was applied, to ensure the quality of the scientific evidence that forms the basis of the recommendation. An up-to-date systematic review and meta-analysis were conducted to prepare the evidence underpinning each of the priority questions.

The BIRD panel of international experts and stakeholders convened to review and make judgements on the evidence and other relevant considerations for each of the following criteria: intervention effects, values, resources, equity, acceptability, and feasibility. The intervention effect criterion refers to the benefits and harms associated with ivermectin for covid-19. The values criterion refers to the importance that those affected by covid-19 assign to the outcomes associated with ivermectin. The resources criterion refers to the resource implications (costs and cost-effectiveness) of ivermectin implementation. The equity criterion considers the health equity implications associated with ivermectin. How acceptable ivermectin would be to relevant stakeholders, including health care workers and patients, and how feasible it would be to implement were also judged by the panel.

Using an electronic survey link, the panel made judgements on these different decision-making criteria which were recorded in a summary table. The summary of the panel judgements then informed the formulation of the draft recommendation, which was guided by the BIRD Steering Group. Possible recommendations included:

- A recommendation in favour of the use of ivermectin for covid-19
- A recommendation not in favour of the use of ivermectin for covid-19
- A recommendation in favour of the use of ivermectin in certain contexts, such as a research context or specific populations or settings.
For the purpose of transparency, the meeting was recorded and live-streamed. The public was invited to participate through a survey link on a streaming channel. With this online survey they were able to make judgements on the evidence as part of a public participation and involvement initiative (PPI).

The BIRD recommendation

The British Ivermectin Recommendation Development panel recommends ivermectin for the prevention and treatment of covid-19 to reduce morbidity and mortality associated with covid-19 infection and to prevent covid-19 infection among those at higher risk.

To ensure that the recommendation is understood and applied in practice, the contributing experts provided additional remarks where necessary. Whilst the panel agreed that ivermectin should be immediately rolled out, they suggested that further randomized trials of ivermectin for covid-19 within individual country settings would be of value to investigate optimal dosage (dose, duration) and combination treatments according to covid-19 severity and risk factors. The overwhelming majority of the panel agreed that placebo control trials are unlikely to be ethical unless conducted among individuals who are uncertain whether or not to use ivermectin. The panel noted that Ivermectin for human use is given orally. Prevention and treatment protocols can be derived from the clinical trials and numerous protocols already developed by expert clinicians in the field. Many of the expert protocols for the treatment and prevention of covid-19 also include vitamin D3, vitamin C and zinc. The panel also suggested that the public would benefit from general advice on how to keep healthy and to boost immunity.

Implementation considerations

The BIRD panel also considered how to implement the recommendation. They agreed that policymakers will need to address with urgency the authorization, manufacture/import, and distribution of ivermectin to guarantee supply. The panel also indicated the need to raise awareness among frontline workers and the public about the benefits of ivermectin.
Additional considerations by the panel included the postal distribution of covid-19 home kits that include ivermectin and possibly also nutritional supplements, such as zinc and vitamins, to reduce the pressure on health services. For pregnant and lactating women, the panel noted some uncertainty with regard to the safety of ivermectin and suggested that pregnant and lactating women should be encouraged to consult their health care practitioners before using ivermectin. This caution also applies to parents and carers, as ivermectin may not be suitable for young children under five. Finally, for prophylaxis during foreign travel, the panel considered that pre-travel advisory clinics could control the dispensing of the medication depending on individual risk factors and covid-19 prevalence in the area of travel.

Dissemination of the recommendation

The Steering Group undertook to communicate and disseminate the recommendation to policy makers, decision makers, regulatory bodies, and implementers as soon as possible in the interest of expediting implementation. These bodies include the World Health Organization, the United States National Institutes of Health, Public Health England, among others.
Evidence-to-decision framework

A. The priority questions

1. For people with covid-19 infection, does ivermectin compared with placebo or no ivermectin improve health outcomes?
2. For people at higher risk of covid-19 infection, does ivermectin compared with placebo or no ivermectin improve health outcomes?

Priority of the problem:
A global health emergency that causes significant mortality and morbidity with serious economic and societal consequences is of the highest priority. Global deaths from covid-19 have reached 2.4 million. No specific treatments are recommended for routine use in all covid-19 infections.

Perspective: Clinical practice recommendation – population perspective

Population:
For question 1: People with covid-19 infection
For question 2: People without infection at higher risk of contracting covid-19

Intervention: Ivermectin administered orally for prevention or treatment of covid-19 infection

Comparison: Placebo or no ivermectin (with or without co-interventions)

Setting: Low-, middle- and high-income countries

Main outcomes:
Comparison 1: Ivermectin treatment versus control

- Death (primary outcome)
- Admission to ICU
- Mechanical ventilation
- Recovery time to negative PCR, in days
- Clinical recovery time, in days
• Length of hospital stay, in days
• Improvement
• Deterioration
• Admission to hospital (for outpatient treatment)
• Duration of mechanical ventilation
• Serious adverse events

Comparison 2: Ivermectin prevention versus control

• Covid-19 infection (primary outcome)
• Death due to any cause
• Serious adverse events

Background

In countries across the globe, hospitalisations and deaths from covid-19 have increased rapidly over recent months with total deaths now exceeding 2.4 million people (1). These figures may be underestimates of the true burden of this disease as in many settings tests are not readily available. In the UK alone, ‘deaths involving covid-19’ have exceeded 120,000 (2).

To date, very few treatments have been identified which have been demonstrated to reduce the burden of morbidity and mortality from covid-19. While corticosteroids are used in those with severe illness and have been shown to reduce mortality (3), there has been little evidence on interventions that may prevent disease, reduce hospitalisations and reduce the numbers of people progressing to critical disease and death.

Ivermectin is an anti-parasitic medication widely used in low- and middle-income countries to treat parasitic infections in adults and children (4,5). Having been used for decades for this purpose, it is considered safe and effective (5,6) and has an increasing list of indications due to its antiviral and anti-inflammatory properties (6). It is included in the World Health Organization’s Model List of Essential Medicines (7).

The dominant mechanism of action of ivermectin as an anti-viral agent against a wide class of RNA viruses (8) is believed to be the blocking of the nuclear import of viral
proteins (9). If imported into the host nucleus, these proteins play a key role in viral replication by suppressing the normal immune response to infection. Ivermectin has also been shown to have a variety of anti-inflammatory effects (10).

Ivermectin’s utility has expanded considerably over the last decade and since April 2020 a large and growing database of observational and randomised studies of ivermectin use against covid-19 has been accumulating. A recent review by the Front Line Covid-19 Critical Care Alliance (FLCCC) summarised findings from 27 randomised controlled trials (RCTs) and observational studies on ivermectin for prevention and treatment of covid-19 infection. Their conclusion was that ivermectin “demonstrates a strong signal of therapeutic efficacy”; the FLCCC has therefore recommended the global adoption of ivermectin use against covid-19 (11). Another review commissioned by WHO has reported that ivermectin reduces deaths by 75% but that more evidence is needed (12).

New trials on ivermectin have reported data since these reviews; therefore, an up-to-date systematic review and meta-analysis has been conducted using Cochrane systematic review methodology (13). This systematic review was more comprehensive and interpreted findings in light of risk of bias in individual trials and the certainty of the evidence for each of the outcomes in the review. This Evidence to Decision (EtD) framework presents this latest evidence from this review on the effectiveness and safety of ivermectin for preventing and treating covid-19, as well as other considerations related to the use of ivermectin, including people’s values and preferences, equity implications, resources, acceptability and feasibility considerations.

The evidence on the effects of ivermectin in this EtD framework is based on evidence from a systematic review that included RCTs, which offer the highest level of evidence in a review (14). The use of evidence in the form of systematic reviews is now considered to be an international standard for guideline development (15). Guidelines are systematically developed recommendations to assist practitioner and patient decisions about treatments for clinical conditions. Many guideline developers, such as the WHO and NICE, recommend the use of these research syntheses to underpin guideline recommendations (16, 17). Guideline development in response to a health and social care emergency requires an acceleration of the process while maintaining transparency of decision-making and reporting. This is one of the core principles underpinning the development of all NICE guidance and standards. It
ensures that users can make judgements on the credibility and applicability of the guideline recommendations (17). Full inclusion criteria and details of methodology of the systematic review that underpins this evidence to decision framework is given in Annex 5.

B. Assessment of the evidence

1) Effects

The evidence on health effects is derived from a systematic review and meta-analysis that originally included 18 RCTs (15 RCTs and 3 quasi-RCTs)(13). This is a rapidly evolving research field and, since the original review, 3 additional studies have reported results, bringing the total number of studies contributing data to updated analyses as at 18 February 2021 to 21 (18 RCTs and 3 quasi-RCTs). The review was conducted using Cochrane review methodology (14). The overall risk of bias in trials was judged as low in 10 trials, moderate or unclear in 5 trials and high in 6 trials. Table 1 summarises the characteristics of these included studies.

Three trials involving 738 participants evaluated covid-19 prevention and 18 trials involving 2003 participants evaluated covid-19 treatment. No trials were conducted among people with long-covid-19. Trial size ranged from 24 to 363 participants. Among the trials of ivermectin for covid-19 treatment, most looked at mild to moderate covid-19; however, four trials included patients with severe covid-19.

Most studies were registered on clinical trial registries, appeared to be self-funded and had been undertaken by clinicians working in the field. There were no obvious conflicts of interest.
Table 1: Characteristics of included studies

<table>
<thead>
<tr>
<th>Study ID (refs 18-38)</th>
<th>Country</th>
<th>Design</th>
<th>Funding</th>
<th>Participants</th>
<th>Sample size</th>
<th>Ivermectin dose and frequency*</th>
<th>Comparator</th>
<th>Origin of data</th>
<th>Overall risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covid-19 treatment studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (18)</td>
<td>Bangladesh</td>
<td>Double-blind</td>
<td>BPL(Pharma); Bangladesh, Canada, Sweden, and UK govt</td>
<td>Mild to moderate covid (inpatients)</td>
<td>72</td>
<td>12mg x 1 day or x 5 days (3 study arms)*</td>
<td>Placebo</td>
<td>Published in PR journal; emailed/responded with data</td>
<td>LOW</td>
</tr>
<tr>
<td>Babalola 2020 (19)</td>
<td>Nigeria</td>
<td>Double-blind</td>
<td>Self-funded</td>
<td>Asymptomatic, mild or moderate covid (45 inpatients and 17 outpatients)</td>
<td>62</td>
<td>6 mg every 84 hrs x 2 wks (arm 1) or 12 mg every 84 hrs x 2 wks (arm 2)</td>
<td>Ritonavir/lopinavir</td>
<td>MedRxiv pre-print: emailed/responded with data. Accepted for publication.</td>
<td>LOW</td>
</tr>
<tr>
<td>Chaccour 2020 (20)</td>
<td>Spain</td>
<td>Double-blind</td>
<td>Idapharma, ISGlobal and the University of Navarra</td>
<td>Mild covid (outpatients)</td>
<td>24</td>
<td>0.4mg/kg x 1 dose</td>
<td>Placebo</td>
<td>Published in PR journal</td>
<td>LOW</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Design</td>
<td>Funding</td>
<td>Condition</td>
<td>Participants</td>
<td>Treatment</td>
<td>Study Quality</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>---------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Chachar 2020 (21)</td>
<td>Pakistan</td>
<td>Open label</td>
<td>Self-funded</td>
<td>Mild covid (outpatients)</td>
<td>50</td>
<td>12mg at 0, 12, and 24 hours (3 doses)</td>
<td>Published in PR journal</td>
<td>MODERATE</td>
<td></td>
</tr>
<tr>
<td>Chowdhury 2020 (22)</td>
<td>Bangladesh</td>
<td>Quasi-RCT</td>
<td>None reported</td>
<td>Outpatients with a +ve PCR (approx. 78% symptomatic)</td>
<td>116</td>
<td>0.2mg/kg x1 dose* HCQ 400 mg 1st day then 200mg BID x 9 days + AZM 500 mg daily x 5 days</td>
<td>Research Square pre-print</td>
<td>HIGH</td>
<td></td>
</tr>
<tr>
<td>Elgazzar 2020 (23)</td>
<td>Egypt</td>
<td>Open label RCT</td>
<td>None reported</td>
<td>Mild to severe covid (inpatients)</td>
<td>200</td>
<td>0.4mg/kg daily x 4 days HCQ 400 mg BID x 1 day then 200 mg BID x 9 days</td>
<td>Research Square pre-print: emailed/responded with data</td>
<td>MODERATE</td>
<td></td>
</tr>
<tr>
<td>Fonseca 2021 (24)</td>
<td>Brazil</td>
<td>Double blind</td>
<td>Institution-funded</td>
<td>Moderate to severe (inpatients)</td>
<td>167</td>
<td>14mg daily x 3 days (plus placebos x 2 additional days) HCQ - 400mg BID on day 0 then daily x 4 days ; CQ -450mg BID day 0 then daily x 4 days</td>
<td>Pre-publication data/ manuscript in progress was obtained via email</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>Hashim 2020 (25)</td>
<td>Iran</td>
<td>Quasi-RCT</td>
<td>None reported</td>
<td>Mild to critical (inpatients)</td>
<td>140</td>
<td>0.2mg/kg x 2 days* SOC</td>
<td>MedRxiv pre-print</td>
<td>HIGH</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study Type</td>
<td>Funding</td>
<td>Disease Severity</td>
<td>Dose</td>
<td>Control Group</td>
<td>Data Availability</td>
<td>Risk of Bias</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Krolewiecki et al.</td>
<td>Argentina</td>
<td>Open label</td>
<td>None</td>
<td>Mild to moderate</td>
<td>0.6mg/kg/day x 5 days</td>
<td>Placebo</td>
<td>SSRN pre-print</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>Mahmud et al.</td>
<td>Bangladesh</td>
<td>Double blind</td>
<td>None</td>
<td>Mild to moderate</td>
<td>12mg x 1 dose*</td>
<td>Placebo + SOC</td>
<td>Data published on clinical trial registry and clarification obtained via email</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>Mohan et al.</td>
<td>India</td>
<td>Double blind</td>
<td>Institution funded</td>
<td>Mild to moderate</td>
<td>12 mg or 24 mg elixir x 1 dose</td>
<td>Placebo</td>
<td>MedRxiv pre-print Research Square pre-print</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>Niaee et al.</td>
<td>Iran</td>
<td>Double blind</td>
<td>Institution-funded</td>
<td>Mild to severe covid</td>
<td>0.2mg/kg x 1 and 3 other dosing options ~ 14 mg tablet**</td>
<td>HCQ 200mg/kg BID or placebo (duration)</td>
<td>Research Square pre-print</td>
<td>LOW</td>
<td></td>
</tr>
<tr>
<td>Okumus et al.</td>
<td>Turkey</td>
<td>Quasi-RCT</td>
<td>None</td>
<td>Severe covid</td>
<td>0.2mg/kg x 5 days</td>
<td>SOC</td>
<td>Pre-publication data/manuscript in progress obtained via email</td>
<td>HIGH</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Design</td>
<td>Funding</td>
<td>Condition</td>
<td>Sample Size</td>
<td>Dose Description</td>
<td>Control</td>
<td>Data Source</td>
<td>GRADE</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Petkov 2021 (31)</td>
<td>Bulgaria</td>
<td>Double blind</td>
<td>Pharma funded</td>
<td>Mild to moderate covid</td>
<td>100</td>
<td>0.4mg/kg x 3 days</td>
<td>Placebo</td>
<td>Pre-publication data obtained from another source</td>
<td>UNCLEAR</td>
</tr>
<tr>
<td>Podder 2020 (32)</td>
<td>Bangladesh</td>
<td>Open label</td>
<td>Self-funded</td>
<td>Mild to moderate (outpatients)</td>
<td>62</td>
<td>0.2mg/kg x 1 dose</td>
<td>SOC</td>
<td>Published in PR journal</td>
<td>HIGH</td>
</tr>
<tr>
<td>Raad 2021 (33)</td>
<td>Lebanon</td>
<td>Double blind</td>
<td>Self-funded</td>
<td>Asymptomatic outpatients</td>
<td>100</td>
<td>9 mg PO if 45kg to 64kg, 12mg PO if 65kg to 84kg and 0.15mg/kg if body weight ≥ 85 Kg</td>
<td>Placebo</td>
<td>Pre-publication data/manuscript in progress obtained via email</td>
<td>UNCLEAR</td>
</tr>
<tr>
<td>Ravikirti 2021 (34)</td>
<td>India</td>
<td>Double blind</td>
<td>Self-funded</td>
<td>Mild to moderate covid (inpatients)</td>
<td>112</td>
<td>12mg x 2 days + SOC</td>
<td>Placebo + SOC</td>
<td>Published in PR journal</td>
<td>LOW</td>
</tr>
<tr>
<td>Rezai 2021 (35)</td>
<td>Iran</td>
<td>Double blind</td>
<td>None reported</td>
<td>Mild to moderate covid (inpatients)</td>
<td>60</td>
<td>0.2mg/kg x 1 dose</td>
<td>SOC</td>
<td>Pre-publication data obtained from another source</td>
<td>UNCLEAR</td>
</tr>
<tr>
<td>Study</td>
<td>Country</td>
<td>Study design</td>
<td>Funding</td>
<td>Population</td>
<td>Doses</td>
<td>Comparator</td>
<td>Data Source</td>
<td>Quality Assessment</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>------------------</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>-------</td>
<td>------------</td>
<td>--------------------------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Schwartz 2021 (36)</td>
<td>Israel</td>
<td>Double blind</td>
<td>None reported</td>
<td>Mild to moderate (outpatients)</td>
<td>94</td>
<td>IVM 0.15 to 0.3mg/kg x 3 days</td>
<td>Placebo</td>
<td>UNCLEAR</td>
<td></td>
</tr>
<tr>
<td>Covid-19 prevention studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chala 2021 (37)</td>
<td>Argentina</td>
<td>Open label</td>
<td>None reported</td>
<td>Health care workers</td>
<td>234</td>
<td>12 mg (in drops) weekly + lola-carrageenan 6 sprays daily x 4 wks</td>
<td>SOC</td>
<td>HIGH</td>
<td></td>
</tr>
<tr>
<td>Elgazzar 2020 (23)</td>
<td>Egypt</td>
<td>Open label</td>
<td>Self-funded</td>
<td>Health care and family contacts</td>
<td>200</td>
<td>0.4mg/kg, weekly x 2 weeks</td>
<td>SOC</td>
<td>Research Square pre-print: emailed/responded with data</td>
<td>MODERATE</td>
</tr>
<tr>
<td>Shouman 2020 (38)</td>
<td>Egypt</td>
<td>Open label</td>
<td>Self-funded</td>
<td>Family contacts</td>
<td>304</td>
<td>2 doses (15mg – 24 mg depending on weight) on day 1 and day 3</td>
<td>SOC</td>
<td>Published in PR journal</td>
<td>HIGH</td>
</tr>
</tbody>
</table>
Summary of review findings – Forest plots can be found in Annex 1

A. Evidence on ivermectin use for the treatment of covid-19 infection compared with no ivermectin use

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. of participants (studies)</th>
<th>Risk ratio or Mean diff (95% confidence interval)</th>
<th>Assumed risk without IVM</th>
<th>Corresponding risk with IVM</th>
<th>Certainty of evidence***</th>
<th>Number needed to treat (NNT) to prevent 1 event</th>
<th>Interpretation of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death due to any cause*</td>
<td>1892 (13)</td>
<td>RR 0.32 (0.14 to 0.73)</td>
<td>91 deaths per 1000 (all inpatients, including severe covid)*</td>
<td>62 fewer deaths per 1000 (from 25 fewer to 78 fewer)</td>
<td>Low to moderate</td>
<td>NNT (all severity of illness): 16 (13 to 41)</td>
<td>IVM may have a significant effect on reducing deaths</td>
</tr>
<tr>
<td>Admission to ICU</td>
<td>279 (2)</td>
<td>RR 1.22 (0.75 to 2.00)</td>
<td>Evidence on admission to ICU was very low certainty.</td>
<td></td>
<td>Very low</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Need for mechanical ventilation</td>
<td>431 (3)</td>
<td>0.65 (0.14 to 3.10)</td>
<td>There was no clear difference between study groups for this outcome</td>
<td></td>
<td>Low</td>
<td>−</td>
<td>IVM may make little or no difference to need for mechanical ventilation</td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>MD</td>
<td>RR (95% CI)</td>
<td>Evidence</td>
<td>Certainty</td>
<td>Evidence</td>
<td>Certainty</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Recovery time in days</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(negative PCR)</td>
<td>375 (4)</td>
<td>MD -3.20 days</td>
<td>(-5.99 to -0.40)</td>
<td>Evidence on relative recovery time to negative PCR (in days) is very low certainty.</td>
<td>Very low</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(clinical)</td>
<td>176 (2)</td>
<td>MD -3.98 days</td>
<td>(-10.06 to 2.10)</td>
<td>Evidence on relative clinical recovery time (in days) is very low certainty.</td>
<td>Very low</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Length of hospital stay</td>
<td>72 (2)</td>
<td>MD 0.13 days</td>
<td>(-2.04 to 2.30)</td>
<td>Evidence on length of hospital stay is very low certainty.</td>
<td>Very Low</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Improvement</td>
<td>681 (4)</td>
<td>RR 1.34 (1.22 to 1.48)</td>
<td>mild/mod</td>
<td>543 improved per 1000 (with mild/moderate covid)</td>
<td>Low</td>
<td>–</td>
<td>IVM may lead to relatively more patients improving in a given time frame</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RR 1.88 (1.54 to 2.30)</td>
<td>severe</td>
<td>Not calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deterioration</td>
<td>1041 (5)</td>
<td>RR 0.26 (0.11 to 0.61)</td>
<td>(any disease severity)</td>
<td>189 per 1000 (from 119 more to 260 more)</td>
<td>Low</td>
<td>–</td>
<td>IVM may lead to fewer patients</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not calculated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Parameter</td>
<td>Data</td>
<td>Evidence on Event</td>
<td>Certainty</td>
<td>Duration</td>
<td>GRADE Working Group grades of evidence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>-----------</td>
<td>----------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admissions to hospital</td>
<td>194 (2)</td>
<td>RR 0.16 (0.02 to 1.32)</td>
<td>Very low</td>
<td>–</td>
<td>Evidence on admission to hospital is very low certainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of mechanical ventilation</td>
<td>–</td>
<td>–</td>
<td>Not estimable</td>
<td>–</td>
<td>There may be little or no difference between IVM or no IVM on SAEs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe adverse events (SAEs)</td>
<td>880 (8)</td>
<td>RR 3.23 (0.55 to 18.87)</td>
<td>Low</td>
<td>–</td>
<td>Severe adverse events (SAEs)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRADE Working Group grades of evidence

Very low certainty: We are very uncertain about the estimate.

Low certainty: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Moderate certainty: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

* Control group rate across all included studies
**The five SAEs occurred in 3 trials – two patients had esophagitis (this is a known side effect of doxycycline, which was co-administered with ivermectin in this trial); one patient had hyponatraemia (this trial used high-dose ivermectin for 5 days); and two patients in a study from Turkey had serious “delirium-like behaviour”, which the authors attributed to a possible genetic mutation.

*** See Section D. Evidence Profile, for grade details.
B. Evidence on ivermectin use for preventing covid-19 infection among people at high risk compared with no ivermectin use

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No. of participants (studies)</th>
<th>RR (95% CI)</th>
<th>Assumed risk without ivermectin</th>
<th>Corresponding risk with ivermectin</th>
<th>Certainty of evidence**</th>
<th>Number needed to treat (NNT) to prevent 1 event</th>
<th>Interpretation of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covid-19 infection</td>
<td>738 (3)</td>
<td>RR 0.14 (0.09 to 0.21)</td>
<td>296 infections per 1000*</td>
<td>254 fewer infections per 1000 (234 to 269)</td>
<td>Low</td>
<td>NNT: 4 (4 to 4)</td>
<td>IVM may have a significant effect on reducing covid-19 infection</td>
</tr>
<tr>
<td>Severe adverse events</td>
<td>538 (2)</td>
<td>–</td>
<td>No severe adverse events recorded.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRADE Working Group grades of evidence

Very low certainty: We are very uncertain about the estimate.

Low certainty: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Moderate certainty: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

*Control group rate across all included studies

** See Section D. Evidence Profile, for grade details
SUMMARY OF EFFECTS
The evidence from meta-analyses show that ivermectin treatment may reduce the risk of death among people with covid-19 by an average of 68% (27% to 86%). Analysis also suggests that, in contexts where the death rate among hospitalized patients is high (around 9.1%), the number needed to treat (NNT) to prevent one death may be around 16 patients (95% CI 13 to 41). The evidence also suggests that it may lead to fewer patients deteriorating if they receive ivermectin compared with them not getting ivermectin. Severe adverse events were infrequent suggesting there may be little or no difference in these events with ivermectin use.

With regard to prophylaxis among those with high exposure, the evidence shows that prevention with ivermectin may reduce the risk of getting infected with covid-19 infection by an average of 86% (79% to 91%). The NNT to prevent one covid-19 infection among those with high exposure may be around 4 (95% CI 4 to 4). No severe adverse events occurred in the two studies reporting this outcome.

DESIRABLE EFFECTS
Judgement: How substantial are the desirable anticipated effects of ivermectin compared with no ivermectin?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>Don't know</th>
<th>Varies</th>
<th>Trivial</th>
<th>Small</th>
<th>Moderate</th>
<th>Large</th>
</tr>
</thead>
</table>

UNDESIRABLE EFFECTS
Judgement: How substantial are the undesirable anticipated effects of ivermectin compared with no ivermectin?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>Don't know</th>
<th>Varies</th>
<th>Large</th>
<th>Moderate</th>
<th>Small</th>
<th>Trivial</th>
</tr>
</thead>
</table>
CERTAINTY OF THE EVIDENCE

Judgement: What is the overall certainty of the evidence on the health outcomes associated with ivermectin?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>No included studies</th>
<th>Very low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
</table>

BALANCE OF EFFECTS

Judgement: Does the balance between desirable and undesirable effects favour ivermectin or no ivermectin?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>Don’t know</th>
<th>Varies</th>
<th>Favours no ivermectin</th>
<th>Probably favours no ivermectin</th>
<th>Does not favour ivermectin or no ivermectin</th>
<th>Probably favours ivermectin</th>
<th>Favours ivermectin</th>
</tr>
</thead>
</table>

Additional considerations on effects

1. Findings from controlled observational studies are consistent with the RCT evidence demonstrating significant reductions in mortality and morbidity associated with covid-19 (11).³

³Due to time and resource constraints, we have not expanded on these in this EtD framework.
2. Ivermectin has a well-established safety profile with billions of doses of ivermectin having been used worldwide for parasitic indications (5,6,39,40). Various WHO documents on parasitic infections refer to ivermectin’s long safety record (40, 41), noting it to have a wide therapeutic window, which minimizes the risk of adverse events (41). In addition, a systematic review of adverse events associated with ivermectin use suggests that it is safe even at higher than usual doses (39). The low risk of serious adverse events is evident on the World Health Organization and Uppsala University VigiAccess database for pharmacovigilance (42) (updated 1 March 2021), which shows that 16 deaths and 4673 adverse events have been reported for ivermectin since 1992. Putting this in context, 417 deaths and 5489 adverse events had been registered for remdesivir, and 1585 deaths and 177052 adverse events had been registered for covid-19 vaccines by same date with less than a year of use and far fewer doses administered.

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Year reporting started</th>
<th>Deaths</th>
<th>Adverse events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin</td>
<td>1992</td>
<td>16</td>
<td>4673</td>
</tr>
<tr>
<td>Remdesivir</td>
<td>2020</td>
<td>417</td>
<td>5489</td>
</tr>
</tbody>
</table>

2 It is not possible to compare different drugs based on this information and conclude that one drug is safer than another. VigiBase reports refer to a suspected causal relationship between a drug and an event, not a confirmed relation. Spontaneous reporting is influenced by many factors and only a small percentage of the occurring adverse drug reactions are notified.

3 These are unadjusted estimates, therefore do not take into account patient characteristics, indications for treatment, number of patients treated, etc.

4 VigiAccess is a user-friendly interface that allows us to search VigiBase® and retrieve statistical data on medicines and vaccines side effects (suspected adverse reactions) reported to the WHO Programme for International Drug Monitoring (WHO PIDM).
<table>
<thead>
<tr>
<th>COVID-19 vaccines</th>
<th>2020</th>
<th>1585</th>
<th>177052</th>
</tr>
</thead>
</table>

3. The Peruvian government approved ivermectin for use for covid-19 in May 2020 (43). After implementation, death rates in eight states reduced from between 64% to 91% over a two-month period (44). In a further analysis of Peruvian data from 24 states with early ivermectin deployment, excess deaths dropped 59% at 30 or more days and 75% at 45 or more days (44). Overall, between July 31st and November 30th 2020, deaths dropped from 646 to 50 per day. When government policy changed limiting ivermectin use, after a new president took office in November 2020, excess deaths rose from 50 on November 30th to 578 on January 31st 2021. It is possible that this might be due to better compliance with lockdowns, PPE, or other factors. (see Annex 2 for Peru graphs).

4. Uttar Pradesh, the largest state by population in India, started using ivermectin for covid-19 in early August 2020. Ivermectin kiosks were set up and treatment kits of ivermectin, doxycycline and zinc were disseminated. Deaths declined soon after and have since been extremely low for the population size (>210 million)(45). For example, no deaths due to covid-19 were reported in this state on the 9th Feb 2021. (see Annex 2 for Uttar Pradesh graphs and other regional case studies).

5. Slovakia, Honduras, Bolivia, Panama and Zimbabwe are among several countries that have incorporated the use of ivermectin into their treatment protocols (46-49).

6. Covid-19 death rates between countries where the African Programme for Onchocerciasis Control (APOC) has been implemented and those of non-APOC countries has been compared (50). Among APOC countries with a community-directed treatment with ivermectin strategy, they report a 28% lower mortality (RR= 0.72, 95% CI: 0.67-0.78) and an 8% lower rate of covid-19 infection (RR= 0.92, 95% CI: 0.91-0.93) compared with non-APOC countries. The authors suggest that substantial community use of ivermectin in APOC countries may have inadvertently had a preventive effect against covid-19.
7. A French study has reported serendipitous control of covid-19 by prophylactic treatment of residents and staff at a nursing home where the index case was hospitalised for scabies and treated with ivermectin (51). In addition, a US geriatrician has reported on his observations of treating over 200 high-risk, elderly residents at six assisted living and nursing homes (52). Early on in the pandemic, based on evidence from an in-vitro study of Ivermectin from Monash University, and his extensive experience of using ivermectin successfully to combat scabies among residents and staff, the clinician started treating residents in the facilities under his care as they tested positive for covid-19 with ivermectin (12mg on Day 1 and Day 8), a combination of vitamins (C, D3, zinc), and an antibiotic (usually doxycycline). He later started using the cocktail for prevention too, when someone in a nursing home tested positive, to prevent infection among others. At six facilities housing a total of 444 high-risk elderly residents, 223 tested positive for covid-19 and 37 died. He reports that the majority of deaths that occurred were among very old residents, those in hospice, and those with pre-existing conditions such as diabetes. No residents experienced respiratory failure or needed respirator support.

8. There is currently no specific treatment on offer for long-covid-19 patients. Emerging evidence suggests that ivermectin may be effective in ameliorating symptoms in this vulnerable group of long-term sufferers, possibly at different dose regimen than for acute covid-19 (53). In a prospective observational study from Peru, 33 long-covid sufferers who were between 4 and 12 weeks from the onset of symptoms were given ivermectin (0.2mg or 0.4mg/kg/day) for between 2 to 4 days depending on symptom severity (53). Additional doses were also given depending on clinical improvement. Total improvement (without any symptoms) was observed in 29 out of the 33 patients after 2 daily doses and total clinical resolution of symptoms was observed among 31 patients.

9. Several prominent clinical covid-19 experts are strongly recommending ivermectin for use in prompt, early initiation therapy for covid-9 infection. (11,54-56) (See protocols table in Annex 3).
VALUES AND PREFERENCES

Is there important uncertainty about, or variability in, how much health professionals and the public value the health outcomes associated with ivermectin?

Treatment outcomes included in this review and meta-analysis were derived from the core outcome set for covid-19 (COS-covid) for hospitalised patients, therefore are important outcomes from a clinician’s perspective. Mortality is considered a critical outcome by all, the public and patients, as well as healthcare professionals.

<table>
<thead>
<tr>
<th>Judgement</th>
<th>Important uncertainty or variability</th>
<th>Possibly important uncertainty or variability</th>
<th>Probably no important uncertainty or variability</th>
<th>No important uncertainty or variability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
</tr>
</tbody>
</table>

2) RESOURCES

How large are the resource requirements (costs) associated with ivermectin use for covid-19?

Research evidence

The resources required to manage people with covid-19 in hospital are substantial; it has been estimated that between 5-10% of those with a coronavirus infection will require hospitalisation and 25% of hospitalisations require intensive care. A global systematic review of hospitalisations due to covid-19 identified median lengths of hospitalisation ranging from 5 to 29 days, and median stays in an ICU ranging between 5 and 19 days. Few published studies have explored the costs associated with covid-19 hospitalisations; however, recently published economic evaluations of treatments for covid-19 infections have reported the cost of one day in ICU to range from USD 1,128 in South Africa to £4520 in the UK, and ventilation in a non-ICU setting in the UK has been reported to cost £1356. A further economic
evaluation based on US data estimated an average hospital admission cost for moderate covid-19 infection of USD 7,207 and USD a cost of 33,247 for a severe covid-19 infection admission (62).

Effective prevention of covid-19 could yield significant reductions in hospitalisation-related resources and, if all strategies are equally effective, the one that can be delivered to the largest numbers with the lowest associated costs will be the most cost-effective option. Treatment that minimises the severity of covid-19 infection and reduces hospitalisation length of stay (in particular admission to ICU) would also have potential to reduce hospital resources substantially. As the review evidence on effects of ivermectin suggests that fewer covid-19 patients may deteriorate and that more patients are likely to improve in a given time frame this has the potential to lead to reductions in hospital resource use.

Main Resource Requirements

No studies examining the resources required for the use of ivermectin for treatment or prophylaxis of covid-19 were identified. However, in many countries (particularly LMICs) ivermectin is readily available and affordable (5,40). The direct cost of ivermectin to either individuals or healthcare purchasing bodies will vary across countries, however, a pack of 100 12mg tablets of ivermectin in 2018 was estimated at approximately $2.90, with a unit price of 0.029 per tablet by an Expert Committee on scabies (40).

In some countries (e.g. the UK and South Africa), oral ivermectin is not currently licensed or registered for human use, therefore, there is no available data on the cost of ivermectin on which to pass judgement of the resources required for its provision. Ivermectin, is however, a generic drug and can be manufactured widely.

Resources required for the administration and monitoring of ivermectin use in hospitalised patients with covid-19 could be expected to be similar to, or less than, comparable oral treatments such as dexamethasone, which is also a generic drug that has been re-purposed to treat covid-19. Economic evaluations of dexamethasone for treating covid-19 have assumed a regimen of one-dose daily for up to 10 days (59,61). Comparatively, the studies of ivermectin reported above in Table 1 propose regimens of one-dose daily for up to five days for inpatients. The resources required for prophylactic use of ivermectin in the community would be lower again, with Table 1
recommending doses ranging from a single dose to three doses, without any associated inpatient administration or monitoring costs.

Excluding non-healthcare technology strategies for the prevention of covid-19 (such as social distancing, national lockdowns, promoting hand washing and wearing of masks etc), resources required for the prevention of covid-19 are substantial. For example, the most prominent healthcare-technology prevention strategy currently is mass vaccination. The UK National Audit Office recently reported total expected investment of £11.7 billion to “purchase and manufacture COVID-19 vaccines for the UK, deploy them in England and support global efforts to find vaccines” (63). Furthermore, purchase of sufficient supplies of vaccinations in LMICs, and even upper-middle income countries such as South Africa, will be slower than in high-income countries (64). The resources required for the use of ivermectin prophylactically would likely be lower than that of vaccination on a per-dose basis as vaccination programmes are associated with administration costs of skilled vaccinators and vaccination centres. Comparably, oral ivermectin would not be subject to these costs as the medication can be taken unsupervised in one’s own home. However, doses of ivermectin for prophylaxis would be required more frequently than vaccination, which is expected to provide protection after one or two doses (65), as ivermectin would be required at regular intervals prophylactically or following each potential exposure to a coronavirus infection.

RESOURCES REQUIRED

How costly are the resources required for ivermectin compared with no ivermectin?

<table>
<thead>
<tr>
<th>Judgement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Don’t know</td>
<td>☐ Varies</td>
</tr>
</tbody>
</table>
Judgement: What is the certainty of the evidence on costs?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>No included studies</th>
<th>Very low</th>
<th>Low</th>
<th>Moderate</th>
<th>High</th>
</tr>
</thead>
</table>

Cost-effectiveness

How cost-effective is ivermectin compared with no ivermectin?

There is no existing evidence of the cost-effectiveness of ivermectin for either treatment or prophylaxis of covid-19 compared to alternative courses of action. However, a systematic review of economic evaluations of antiviral treatments in pandemics and outbreaks of respiratory diseases, similar to covid-19, has shown that antiviral treatments are likely to be cost-effective either as standalone treatments or as part of a multifaceted treatment approach (66). Economic evaluations of ivermectin for treatment and prophylaxis of covid-19 are needed to examine whether it is cost-effective against alternative treatments and preventive programmes, such as vaccination.

Judgement: How cost-effective is ivermectin compared with no ivermectin?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>Don't know</th>
<th>Varies</th>
<th>Favours no ivermectin</th>
<th>Probably favours no ivermectin</th>
<th>Does not favour ivermectin or no ivermectin</th>
<th>Probably favours ivermectin</th>
<th>Favours ivermectin</th>
</tr>
</thead>
</table>
3) **Equity**

What would be the impact of ivermectin on equity?

Research evidence

No specific research studies were identified in related to the equity implications of ivermectin for covid-19.

Additional considerations

1. Covid-19 is a disease that is proving to disproportionately affect disadvantaged communities, both in low- and high-income settings. Cheap and effective treatments for covid-19, therefore, have the potential to improve health equity.

2. Black and Minority Ethnic (BAME) population groups are more exposed to Covid-19 due to occupation and living conditions and are thus at higher risk than the general population for being infected and experiencing worse associated health outcomes compared with other ethnic groups (68, 69).

3. BAME groups are also accessing vaccines in lower numbers than other ethnic groups in certain countries (70). Ivermectin may more effectively reach traditionally ‘hard-to-reach’ groups because it is cheap, easy to distribute and administer, and has a good safety record.

4. Some countries, such as India, are awaiting further safety data on the covid-19 vaccines (71); it would therefore improve health equality to offer people in these countries a re-purposed medicine such as ivermectin that has a good chance of reducing deaths and infection rates among those at risk.

5. Disadvantaged people and those living in LMICs are likely to have lower access to covid-19 vaccinations than those living in high-income countries, as the roll-out of the vaccines is expected to take much longer in LMICs.

6. Health care and other frontline workers are great risk of covid-19 infection. The evidence shows that ivermectin may reduce their
occupational risk, thereby improving health equity for this occupationally vulnerable group.

7. The UK Office of National Statistics reports that covid-19 disproportionately affects people with disabilities – ‘in England, the risk of death involving the coronavirus (COVID-19) was 3.1 times greater for more-disabled men and 1.9 times greater for less-disabled men, compared with non-disabled men; among women, the risk of death was 3.5 times greater for more-disabled women and 2.0 times greater for less-disabled women, compared with non-disabled women’ (67).

8. Ivermectin is affordable, and can be distributed by various means, e.g. post, and self-administered. It can therefore effectively reach traditionally ‘hard-to-reach’ and vulnerable populations such as undocumented migrants, homeless, the elderly living alone or in care homes, those lacking transport to reach health facilities, and those who lack access to adequate health care for other reasons.

9. Ivermectin has for the past 30+ years has been used extensively, safely and successfully for the control and eradication of common and disabling tropical diseases affecting a majority of populations in LMICs. The mass drug administration (MDA) of ivermectin in these settings has also brought significant non-target benefits, e.g. health and socioeconomic prospects, of all communities where MDA has been carried out (72).

10. A recent review and meta-analysis of 35 studies has shown that the majority of children exhibit needle fear. Among adolescents, prevalence estimates for needle fear ranged from 20-50% and, in young adults, 20-30%. Avoidance of influenza vaccination because of needle fear occurred in 16% of adults, 27% of hospital employees, 18% of workers at long-term care facilities, and 8% of healthcare workers at hospitals (73). Having an alternative preventive measure against covid-19 will buy time and increase equity through increased access to health care for when vaccination is not widely available or not an option.

11. There are some early indications that vaccination may not be suitable for all elderly people, who are an at-risk group for poor health outcomes associated with covid-19 infection (74). Having an alternative or additional preventive measure with a known safety profile in this age group could be
welcomed by care takers and nursing home residents and could, therefore, improve health equity for this vulnerable group.

12. Recognition of the contributions made by clinician-researchers’ in LMICs to covid-19 research, as well as of the people who took part in this valuable research, will help to improve research equity. The case of ivermectin may encourage high impact factor journals in high-income countries to be more receptive and supportive of clinician-researchers in LMICs (for example, by providing assistance with medical writing and paper submission) and may reduce publication bias against research originating from LMICs.

13. Health care waiting lists for people suffering from non-covid-19 health issues are increasing exponentially and in England, for example, it is estimated that numbers could reach 10 million by April 2021, which represents 185 of the population (76). Any intervention that will reduce waiting times and facilitate increased access to hospital treatment will improve equity.

Judgement: What would be the impact of ivermectin on equity?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>☐ Don’t know</th>
<th>☐ Varies</th>
<th>☐ Reduced</th>
<th>☐ Probably reduced</th>
<th>☐ Probably no impact</th>
<th>☐ Probably increased</th>
<th>☑ Increased</th>
</tr>
</thead>
</table>
4) **Acceptability**

Would ivermectin be acceptable to health professionals, patients, families and other stakeholders?

Research evidence

No specific research studies were identified on the acceptability of ivermectin for covid-19.

Additional considerations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Several of the previous additional consideration bullet points of this document indicate that this would be an acceptable intervention, such as its widespread use in many countries for parasitic indications, its growing use for covid-19, its potential to reduce the health, social and economic impact of covid-19 and lockdowns and its long safety record.</td>
</tr>
<tr>
<td>2.</td>
<td>Ivermectin is already on the WHO Essential Medicine List (7) and has a long track record of clinical safety (40,41). This is supported by the adverse events registrations on the Vigiaccess database (42) described above, and findings of a recent systematic review of adverse events confirming that ivermectin is safe, even at higher than usual doses (39). As it has been used for covid-19 in several countries and states for some months, any increase in deaths would have been demonstrated on the Vigiaccess database by now, as has been shown with Remdesivir and covid-19 vaccines. This further suggests that ivermectin would be acceptable.</td>
</tr>
<tr>
<td>3.</td>
<td>The evidence shows that ivermectin may reduce covid-19 deaths, as well as the severity of illness, therefore, it is likely to be very acceptable to people with any stage of covid-19 infection.</td>
</tr>
<tr>
<td>4.</td>
<td>For prevention of at-risk people, such as health workers and family contacts, a weekly dose of 12 mg (one tab) for a 60 kg adult has been used. This is a similar dose to treating scabies (40), which suggests that people would find this acceptable.</td>
</tr>
<tr>
<td>5.</td>
<td>Logic suggests that any intervention that reduces the demand for hospital beds would be very acceptable to policymakers and health care workers.</td>
</tr>
</tbody>
</table>
6. Similarly, logic suggests that any intervention that reduces the risk of getting covid-19 infection without serious side effects would be acceptable to most stakeholders.

7. Logic also suggests that individuals suffering with long-covid would be interested in trying a re-purposed, widely used and inexpensive medicine such as ivermectin, with its long safety record, when there is nothing else on offer, if there is the remotest chance that it may ameliorate symptoms.

8. Finally, Emergency Use Authorisation (EUA) has been acceptable for covid-19 vaccines and other novel treatments. The Emergency use authorisation for covid-19 vaccines is based on “the totality of scientific evidence available that the product may be effective to prevent covid-19 during the covid-19 pandemic and that the known and potential benefits outweigh the known and potential risks.” The terminology “may prevent” is consistent with low certainty evidence. In addition, the options that have already been given EUA, such as covid-19 vaccines and remdesivir, have less safety data than ivermectin – therefore an EUA for ivermectin is likely to be at least as acceptable to stakeholders as these options.

Judgement: Would ivermectin be acceptable to health professionals, patients, families and other stakeholders?

<table>
<thead>
<tr>
<th>Judgement</th>
<th>Don't know</th>
<th>Varies</th>
<th>No</th>
<th>Probably No</th>
<th>Probably Yes</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5) Feasibility

Would ivermectin be feasible to implement?

Research evidence

No specific research studies were identified on the feasibility of ivermectin for covid-19.

Additional considerations

1. The drug has proven record on safety in human use, with the total doses distributed in the last 30 years apparently equalling one-third of the present world population (5).

2. From the demand side, if ivermectin is free and available, it is extremely feasible in all countries. As it is a relatively inexpensive medicine, many people, particularly in higher income countries, may even be prepared to pay for ivermectin themselves.

3. However, on the supply side there may be several considerations to take into account, such as changes in regulatory norms and policies (e.g. tariffs, labelling, imports, government oversight, etc.), how sustainable the production is (local or imported), and how to guarantee product availability.

4. Ivermectin is unlicensed in some countries, including the UK, and the implications of this are uncertain. However, as ivermectin is a generic medicine, there are many manufacturers worldwide. In addition, during the current emergency situation it would be expected that governments’ have measures in place to expedite approval and implementation of repurposed medicines that reduce deaths associated with covid-19.

5. For immediate supplies in those countries without a manufacturer of ivermectin, importation would be required and ways of facilitating this without delays may need additional consideration.
Judgement: Would ivermectin be feasible to implement?

<table>
<thead>
<tr>
<th>Judgement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Don't know</td>
<td>☐</td>
</tr>
<tr>
<td>Varies</td>
<td>☐</td>
</tr>
<tr>
<td>No</td>
<td>☐</td>
</tr>
<tr>
<td>Probably No</td>
<td>☐</td>
</tr>
<tr>
<td>Probably Yes</td>
<td>☐</td>
</tr>
<tr>
<td>Yes</td>
<td>✗</td>
</tr>
</tbody>
</table>
Summary of BIRD panel judgements on ivermectin* (✓)

<table>
<thead>
<tr>
<th></th>
<th>Desirable effects</th>
<th>Undesirable effects</th>
<th>Certainty of the evidence on effects</th>
<th>Values</th>
<th>Balance of effects</th>
<th>Resources required</th>
<th>Certainty of evidence of required resources</th>
<th>Cost-effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Don’t know</td>
<td>- Varies</td>
<td>- Trivial</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>- Trivial</td>
<td>- Small</td>
<td>- Moderate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>- Moderate</td>
<td>- Large</td>
<td>- Moderate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>- Large</td>
<td>- Small</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * denotes evidence that favours ivermectin over no ivermectin or no intervention.
<table>
<thead>
<tr>
<th></th>
<th>Equity</th>
<th>Acceptability</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Don't know</td>
<td>-</td>
<td>Don't know</td>
</tr>
<tr>
<td></td>
<td>Varies</td>
<td>Reduced</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Reduced</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Probably reduced</td>
<td>-</td>
<td>Probably No</td>
</tr>
<tr>
<td></td>
<td>Probably no impact</td>
<td>-</td>
<td>Probably Yes</td>
</tr>
<tr>
<td></td>
<td>Probably increased</td>
<td>-</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Increased</td>
<td>✓</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Majority judgements – see Annex 7 for judgement graphs.
C. Conclusions

Recommendation

The British Ivermectin Recommendation Development Panel recommends ivermectin for the prevention and treatment of covid-19 to reduce morbidity and mortality associated with covid-19 infection and to prevent covid-19 infection among those at higher risk.

Judgement

<table>
<thead>
<tr>
<th>We do not recommend the intervention</th>
<th>We recommend considering the intervention</th>
<th>We recommend the intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐</td>
<td>☑</td>
</tr>
<tr>
<td></td>
<td>☐ in specific contexts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☐ with targeted monitoring and evaluation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>☐ in the context of rigorous research</td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- Whilst the panel agreed that ivermectin should be immediately rolled out, they suggested that further randomized trials of ivermectin for covid-19 within individual country settings would be of value to investigate optimal dosage (dose, duration) and combination treatments according to covid-19 severity and risk factors.
- The overwhelming majority of the panel agreed that placebo control trials are unlikely to be ethical unless conducted among individuals who are uncertain whether or not to use ivermectin.
- Ivermectin for human use is given orally. Prevention and treatment protocols can be derived from the clinical trials and numerous protocols already developed by expert physicians in the field. Suggested protocols include:
For covid-19 prevention among frontline workers: 12mg every 4 to 6 weeks. (Alam/India protocol)

For covid-19 prevention among case contacts: 12mg on day 1 and day 3 or 4 post-exposure. (MATH+ and Shouman protocols)

For covid-19 prophylaxis among elderly nursing home residents: 12mg on day 1 and day 8 after identification of an index case. (Chesler protocol)

For covid-19 treatment of asymptomatic and mild covid-19 (early outpatient treatment): 0.2mg/kg (~12mg tablet for a 60kg person) on day 1 and day 2. Days 3 to 5 the same, if not recovered. (MATH+ protocol) Some protocols use 0.4mg/kg instead of 0.2mg/kg.

No RCT evidence was found on ivermectin for the treatment of people with long-covid and it is possible that different dosing regimen may be required. Therefore, determining the appropriate dosing regimen for long-covid sufferers represents an important research gap. In the meantime, a published regimen for long covid-19 gives an ivermectin dose of 0.2mg/kg or 0.4mg/kg, depending on symptom severity, for 2 to 4 days. (Aguirre-Chang protocol)

- Many of the expert protocols for the treatment and prevention of covid-19 also include vitamin D3, vitamin C and Zinc. (refer to Annex 4)
- The public would benefit from general advice on how to keep healthy and to boost immunity, such as taking daily exercise; avoidance of alcohol and sugar; daily vitamin and mineral supplements during the pandemic (in particular, vitamin D, vitamin C and zinc); getting as much sunshine on the skin as possible; and spending time in nature.
- Courtesy of Professor Satoshi Omura and colleagues at Kitasano University, a list of international suppliers can be found in Annex 8. This list is not comprehensive.
Implementation considerations

1. Policymakers will need to expedite ivermectin authorisation. Those countries without ivermectin manufacturers will need to look at how to establish a guaranteed supply of the medicine and how to distribute it in the most efficient way, e.g. based on prioritisation according to high risk groups or areas.

2. Media coverage and campaigns may be the most effective way to raise public awareness and to counter-act the extensive misinformation that has been disseminated about this effective and safe medicine.

3. Policymakers may wish to ensure that frontline workers are informed of the benefits of ivermectin prevention as soon as possible and, after allocating doses to hospitals for covid-19 treatment, may wish to prioritise supplies of ivermectin for this at-risk group.

4. Policymakers in some countries may wish to make ivermectin a medically dispensed medicine rather than an over the counter medicine and a registry could be kept, to accumulate country-specific evidence on its uptake, use and safety.

5. Policymakers may wish to consider providing their populations with a covid-19 home kit for each family member, consisting of a blister pack of a dose of ivermectin, plus 7 days of zinc, vitamin D3 and vitamin C for use in the event of exposure to, or contact with, a person with covid-19 infection. This should be possible at relatively low cost. Guidance on the appropriate ivermectin dose according to weight, and for children over five, could also be provided with the kit.

6. The covid-19 home kit could be delivered by post in many countries, thereby, reducing the risk of those with covid-19 infection infecting others. This would alleviate the need for people to visit a doctor for the medication and would reduce the pressure on health services.

7. Pregnant and lactating women would need to be made aware that they must consult their general practitioners if they are exposed to someone with covid-19 or if they develop symptoms, as ivermectin may not be suitable for use.

8. Parents and carers would need to be made aware that ivermectin may not be suitable for young children under five; they would need to consult their general practitioners for advice should their young child develop symptoms.
9. For prophylaxis during foreign travel, the prescribing process could be within the remit of pre-travel advisory clinics run by general practitioners. Pre-travel advisory clinics could control the dispensing of the medication depending on individual risk factors and covid-prevalence in the area of travel.

Research gaps

1. In people with covid-19 infection, what are the optimal ivermectin dose regimens to reduce the risk of having long covid-19 and other longer-term sequelae?
2. In people with covid-19 infection, does ivermectin in combination with doxycycline or other medicines, such as hydroxychloroquine, compared with ivermectin alone lead to improved health outcomes?
3. For people with long-covid, what are the effects of different ivermectin regimen (with or without other medications) on health outcomes?
4. What is the best dose and frequency to be used for routine prophylaxis among different at-risk groups?
D. Evidence Profile

Author(s): Andrew Bryant, Theresa A Lawrie, Therese Dowswell, Edmund Fordham, Sarah Hill, Scott Mitchell, Tony Tham
Date: 2021-02-13
Question: Should Ivermectin vs control be used for the treatment of covid-19 infection?
Settings:
Bibliography: Bryant A, Lawrie TA, Dowswell T, Fordham E, Hill S, Mitchell S, Tham T. Ivermectin for prevention and treatment of covid-19 infection. (updated analyses of a submitted review)

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death from any cause (subgrouped by disease severity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>13</td>
<td>randomised trials</td>
<td>serious¹</td>
<td>serious²</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>12</td>
<td>randomised trials</td>
<td>serious¹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>11</td>
<td>randomised trials</td>
<td>serious³</td>
<td>serious⁴</td>
<td>no serious indirectness</td>
</tr>
</tbody>
</table>

Death (sensitivity analysis excluding Fonseca 2021)

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (sensitivity analysis excluding Fonseca 2021)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>13</td>
<td>randomised trials</td>
<td>serious¹</td>
<td>serious²</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>12</td>
<td>randomised trials</td>
<td>serious¹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>11</td>
<td>randomised trials</td>
<td>serious³</td>
<td>serious⁴</td>
<td>no serious indirectness</td>
</tr>
</tbody>
</table>

Death (sensitivity analysis excluding studies at high ROB)

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death (sensitivity analysis excluding studies at high ROB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>13</td>
<td>randomised trials</td>
<td>serious¹</td>
<td>serious²</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>12</td>
<td>randomised trials</td>
<td>serious¹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>11</td>
<td>randomised trials</td>
<td>serious³</td>
<td>serious⁴</td>
<td>no serious indirectness</td>
</tr>
</tbody>
</table>

Death (sensitivity analysis excluding studies with active controls)
<table>
<thead>
<tr>
<th></th>
<th>randomised trials</th>
<th>very serious risk of bias</th>
<th>no serious inconsistency</th>
<th>no serious indirectness</th>
<th>no serious imprecision</th>
<th>none</th>
<th>7/575 (1.2%)</th>
<th>22/508 (4.3%)</th>
<th>RR 0.45 (0.21 to 0.98)</th>
<th>24 fewer per 1000 (from 1 fewer to 34 fewer)</th>
<th>BBDOK LOW CRITICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery time to -ve PCR test (Better indicated by lower values)</td>
<td>4</td>
<td>randomised trials</td>
<td>serious⁵</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
<td>serious⁳</td>
<td>none</td>
<td>207</td>
<td>168</td>
<td>-</td>
<td>MD 3.2 lower (5.99 to 0.4 lower)</td>
</tr>
<tr>
<td>Recovery time (clinical) - Outpatient treatment (Better indicated by lower values)</td>
<td>2</td>
<td>randomised trials</td>
<td>very serious⁹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
<td>serious¹³</td>
<td>none</td>
<td>92</td>
<td>84</td>
<td>-</td>
<td>MD 1.06 lower (1.63 to 0.49 lower)</td>
</tr>
<tr>
<td>Recovery time (clinical) - Inpatient (mild to moderate) (Better indicated by lower values)</td>
<td>1</td>
<td>randomised trials</td>
<td>very serious⁹</td>
<td>no serious consistency</td>
<td>no serious indirectness</td>
<td>serious¹¹</td>
<td>none</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>MD 7.32 lower (9.25 to 5.39 lower)</td>
</tr>
<tr>
<td>Recovery time (clinical) - Inpatient (severe) (Better indicated by lower values)</td>
<td>1</td>
<td>randomised trials</td>
<td>very serious⁹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
<td>serious¹¹</td>
<td>none</td>
<td>11</td>
<td>22</td>
<td>-</td>
<td>MD 3.98 lower (10.06 lower to 2.1 higher)</td>
</tr>
<tr>
<td>Admission to ICU</td>
<td>2</td>
<td>randomised trials</td>
<td>no serious risk of bias⁷</td>
<td>no serious inconsistency</td>
<td>serious¹³</td>
<td>serious¹⁴</td>
<td>none</td>
<td>20/107 (18.7%)</td>
<td>31/172 (18%)</td>
<td>RR 1.22 (0.75 to 2)</td>
<td>40 more per 1000 (from 45 fewer to 180 more)</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Randomised Trials</td>
<td>Risk of Bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
<td>Imprecision</td>
<td>None</td>
<td>Event Count</td>
<td>Effect Size</td>
<td>CI [-2.58]</td>
<td>Absolute Effect</td>
<td>Harm/Low Risk</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>No serious</td>
<td>No serious</td>
<td>Serious</td>
<td>None</td>
<td>13/207 (6.3%)</td>
<td>29/224 (12.9%)</td>
<td>RR 0.65 (0.14 to 3.1)</td>
<td>-</td>
<td>45 fewer per 1000 (from 111 fewer to 272 more)</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Length of hospital stay - Mild to moderate covid-19 (Better indicated by lower values)

<table>
<thead>
<tr>
<th>Study</th>
<th>Randomised Trials</th>
<th>Risk of Bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other</th>
<th>Event Count</th>
<th>Effect Size</th>
<th>CI [-2.58]</th>
<th>Absolute Effect</th>
<th>Harm/Low Risk</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>Serious</td>
<td>No serious</td>
<td>No serious</td>
<td>Very serious</td>
<td>None</td>
<td>45</td>
<td>23</td>
<td>-</td>
<td>MD 0.13 higher (2.04 lower to 2.3 higher)</td>
<td>VERY LOW</td>
<td>IMPORTANT</td>
</tr>
</tbody>
</table>

Improvement - Mild to moderate covid-19

<table>
<thead>
<tr>
<th>Study</th>
<th>Randomised Trials</th>
<th>Risk of Bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other</th>
<th>Event Count</th>
<th>Effect Size</th>
<th>CI [-2.58]</th>
<th>Absolute Effect</th>
<th>Harm/Low Risk</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>Serious</td>
<td>No serious</td>
<td>No serious</td>
<td>No serious</td>
<td>Other</td>
<td>257/353 (72.8%)</td>
<td>178/328 (54.3%)</td>
<td>RR 1.34 (1.22 to 1.48)</td>
<td>-</td>
<td>185 more per 1000 (from 119 more to 260 more)</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Improvement - Severe covid-19

<table>
<thead>
<tr>
<th>Study</th>
<th>Randomised Trials</th>
<th>Risk of Bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>None</th>
<th>Event Count</th>
<th>Effect Size</th>
<th>CI [-2.58]</th>
<th>Absolute Effect</th>
<th>Harm/Low Risk</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>Very serious</td>
<td>No serious</td>
<td>No serious</td>
<td>No serious</td>
<td>None</td>
<td>94/100 (94%)</td>
<td>50/100 (50%)</td>
<td>RR 1.88 (1.54 to 2.3)</td>
<td>-</td>
<td>440 more per 1000 (from 270 more to 650 more)</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Deterioration

<table>
<thead>
<tr>
<th>Study</th>
<th>Randomised Trials</th>
<th>Risk of Bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>None</th>
<th>Event Count</th>
<th>Effect Size</th>
<th>CI [-2.58]</th>
<th>Absolute Effect</th>
<th>Harm/Low Risk</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>Serious</td>
<td>No serious</td>
<td>No serious</td>
<td>No serious</td>
<td>None</td>
<td>27/534 (5.1%)</td>
<td>96/507 (18.9%)</td>
<td>RR 0.26 (0.11 to 0.61)</td>
<td>-</td>
<td>140 fewer per 1000 (from 74 fewer to 169 fewer)</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Admission to hospital

<table>
<thead>
<tr>
<th>Study</th>
<th>Randomised Trials</th>
<th>Risk of Bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>None</th>
<th>Event Count</th>
<th>Effect Size</th>
<th>CI [-2.58]</th>
<th>Absolute Effect</th>
<th>Harm/Low Risk</th>
<th>Imprecision</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18</td>
<td>Serious</td>
<td>No serious</td>
<td>No serious</td>
<td>Very serious</td>
<td>None</td>
<td>0/99 (0%)</td>
<td>5/95 (6%)</td>
<td>RR 0.16 (0.02 to 1.32)</td>
<td>-</td>
<td>-</td>
<td>VERY LOW</td>
</tr>
</tbody>
</table>

Serious adverse events
<table>
<thead>
<tr>
<th>n</th>
<th>randomised trials</th>
<th>serious</th>
<th>no serious inconsistency</th>
<th>no serious indirectness</th>
<th>serious(^1)</th>
<th>none</th>
<th>5/547 (1%)</th>
<th>0/427 (0%)</th>
<th>RR 3.23 (0.55 to 18.87)</th>
<th>-</th>
<th>LOW</th>
<th>CRITICAL</th>
</tr>
</thead>
</table>

1. Most of the studies contributing data had design limitations or serious design limitations
2. Statistical heterogeneity (I\(^2\)) = 61%. There was considerable variation in the size of treatment effect
3. Most of the studies contributing data had design limitations
4. High statistical heterogeneity (I\(^2\) = 69%)
5. Most of the data (80%) were from studies with very serious design limitations
6. Studies contributing data had design limitations (approximately half had serious design limitations (49.4%)
7. There was serious statistical heterogeneity (I\(^2\) = 90%)
8. Total sample size less than 400 participants
9. Data from studies with serious design limitations
10. Total sample size > 200
11. Data from single study with small sample size (<100)
12. Not downgraded for study design. Most of the data was from a study with lower risk of bias
13. The study contributing most of the weight had an active control group
14. Wide 95% CI crossing the line of no effect
15. Wide 95% CI crossing the line of no effect and low sample size
16. Single study with design limitations
17. High statistical heterogeneity (I\(^2\) = 63%)
18. Wide 95% CI crossing line of no effect and low event rate
19. Wide 95% CI crossing line of no effect (not downgraded for low events - sample size 974 - but only 5 events
Author(s): Andrew Bryant, Theresa A Lawrie, Therese Dowswell, Edmund Fordham, Sarah Hill, Scott Mitchell, Tony Tham
Date: 2021-02-13
Question: Should Ivermectin vs control be used for the prevention of covid-19 infection?
Settings:

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of studies</th>
<th>Design</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other considerations</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>covid-19 infection</td>
<td>3</td>
<td>randomised trials</td>
<td>very serious</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
<td>no serious imprecision</td>
<td>none</td>
<td>Ivermectin: 21/420 (5%)</td>
<td>RR 0.14 (0.09 to 0.21)</td>
<td>254 fewer per 1000 (from 234 fewer to 269 fewer)</td>
</tr>
</tbody>
</table>

| Serious adverse events | 2 | randomised trials | very serious | no serious inconsistency | no serious indirectness | very serious² | none | Ivermectin: 0/320 (0%) | RR not pooled | No estimable data | VERY LOW | CRITICAL |

<table>
<thead>
<tr>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivermectin: 21/420 (5%)</td>
<td>RR 0.14 (0.09 to 0.21)</td>
<td>LOW</td>
<td>IMPORTANT</td>
</tr>
</tbody>
</table>

Absolute			

254 fewer per 1000 (from 234 fewer to 269 fewer)			

| Serious adverse events | 2 | randomised trials | very serious | no serious inconsistency | no serious indirectness | very serious² | none | Control: 94/318 (29.6%) | RR 0.14 (0.09 to 0.21) | 254 fewer per 1000 (from 234 fewer to 269 fewer) | LOW | IMPORTANT |

Absolute			

254 fewer per 1000 (from 234 fewer to 269 fewer)			

| Serious adverse events | 2 | randomised trials | very serious | no serious inconsistency | no serious indirectness | very serious² | none | Control: 94/318 (29.6%) | RR 0.14 (0.09 to 0.21) | 254 fewer per 1000 (from 234 fewer to 269 fewer) | LOW | IMPORTANT |

Absolute			

254 fewer per 1000 (from 234 fewer to 269 fewer)			
E. References

31. Petkov S. Multicenter, randomized, double-blind, placebo-controlled study investigating efficacy, safety and tolerability of ivermectin HUVE-19 in patients with proven SARS-CoV-2 infection (covid-19) and manifested clinical symptoms. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-002091-12/BG.

34. Ravikirti et al. Ivermectin as a potential treatment for mild to moderate covid-19 – A double blind randomized placebo-controlled trial. 2021. (Preprint server)

52. Chesler DL. Letter to Dr Bray at the National Institutes of Health. Personal communication.

56. COMET. The meta-COS for research in covid-19 hospitalised patients. https://www.comet-initiative.org/assets/downloads/covid-19%20meta%20COS_Table%201_29th%20October%202020.pdf (accessed 12/01/2021)

64. Dyer Owen. Covid-19: Countries are learning what others paid for vaccines BMJ 2021; 372 :n281
finds-bame-groups-less-likely-to-want-covid-vaccine.html (Accessed 17 February 2021)

ANNEX 1. FOREST PLOTS

Forest plot: Death due to any cause (main analysis)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Control Events</th>
<th>Total Weight</th>
<th>M–H, Random, 95% CI</th>
<th>Risk Ratio M–H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Mild to moderate covid-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>0</td>
<td>45</td>
<td>0</td>
<td>23</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Babaloo 2020 (2)</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>20</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Chaccour 2020 (3)</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Elgazzar 2020 (4)</td>
<td>0</td>
<td>100</td>
<td>4</td>
<td>100</td>
<td>6.1% (0.01, 2.04)</td>
</tr>
<tr>
<td>Hashim 2020 (5)</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>48</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Mahmud 2020 (6)</td>
<td>0</td>
<td>183</td>
<td>3</td>
<td>180</td>
<td>6.0% (0.01, 2.70)</td>
</tr>
<tr>
<td>Mohan 2021 (7)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>52</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Peskov 2021 (8)</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>Not estimable</td>
</tr>
<tr>
<td>RaviKirti 2021 (9)</td>
<td>0</td>
<td>55</td>
<td>4</td>
<td>57</td>
<td>6.1% (0.01, 2.09)</td>
</tr>
<tr>
<td>Reizel 2020 (10)</td>
<td>1</td>
<td>35</td>
<td>0</td>
<td>34</td>
<td>5.4% (2.92, 1.69, 20)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>670</td>
<td>576</td>
<td>23.6%</td>
<td>0.25 (0.05, 1.10)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: tau^2 = 0.03; chi^2 = 3.04, df = 3 (P = 0.39); I^2 = 1%
Test for overall effect: Z = 1.84 (P = 0.07)

1.1.2 Severe covid-19						
Elgazzar 2020 (11)	2	100	20	100	13.9%	0.10 (0.02, 0.42)
Fonseca 2021 (12)	12	52	25	115	20.9%	1.06 (0.58, 1.94)
Hashim 2020 (13)	0	11	6	22	6.5%	0.15 (0.01, 2.40)
Okumus 2021 (14)	6	36	9	45	18.4%	0.56 (0.22, 1.38)
Subtotal (95% CI)	199	267	59.7%	0.40 (0.13, 1.24)		
Total events	20	60				

Heterogeneity: tau^2 = 0.89; chi^2 = 11.73, df = 3 (P = 0.008); I^2 = 74%
Test for overall effect: Z = 1.59 (P = 0.11)

1.1.3 Mild, moderate and severe covid-19						
Niaee 2020 (15)	4	120	11	60	16.7%	0.18 (0.06, 0.55)
Subtotal (95% CI)	120	60	16.7%	0.18 (0.06, 0.55)		
Total events	4	11				

Heterogeneity: Not applicable
Test for overall effect: Z = 3.03 (P = 0.002)

| **Total (95% CI)** | 989 | 903 | 100.0% | 0.32 (0.14, 0.73) |
| **Total events** | 25 | 82 | | |

Heterogeneity: tau^2 = 0.77; chi^2 = 20.27, df = 8 (P = 0.009); I^2 = 61%
Test for overall effect: Z = 2.70 (P = 0.007)
Test for subgroup differences: chi^2 = 0.93, df = 2 (P = 0.63), I^2 = 0%

Footnotes
1. IVM 12mg x 5 days (24 pts) or IVM 12 mg + doxy x 5 days (24 pts)
2. IVM 6mg–12mg every 8 hrs for 2 wks; vs lopinavir/ritonavir
3. IVM 0.4mg/kg single dose
4. IVM up to 24 mg daily for 4 days vs HCQ
5. IVM 0.2mg/kg x 2–3 days + Doxy 100 mg BID x 10 days
6. IVM 6mg once + Doxy 100 mg x 5 days
7. IVM 12mg or 24 mg single dose
8. IVM 0.4mg/kg x 3 days
9. IVM 12 mg x 2 days
10. IVM 0.2mg/kg single dose
11. IVM up to 24 mg daily for 4 days vs HCQ
12. IVM 14 mg x 3 days vs HCQ x 5 days or HCQ x 5 days
13. IVM 0.2mg/kg x 2–3 days + Doxy 100 mg BID x 10 days
14. IVM 0.2mg/kg x 5 days (both arms received HCQ, favipiravir, azithromycin)
15. IVM 0.2mg/kg to 400 µg/kg (1 to 3 doses) vs HCQ
Forest plot: Death due to any cause (excluding Fonseca)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Ivermectin Total</th>
<th>Control Events</th>
<th>Control Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1 Mild to moderate covid-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>0</td>
<td>45</td>
<td>0</td>
<td>23</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Babalola 2020 (2)</td>
<td>0</td>
<td>42</td>
<td>0</td>
<td>20</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Charcoal 2020 (3)</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Elgazzar 2020 (4)</td>
<td>0</td>
<td>100</td>
<td>4</td>
<td>100</td>
<td>5.0%</td>
<td>0.11 [0.01, 2.04]</td>
</tr>
<tr>
<td>Hashim 2020 (5)</td>
<td>0</td>
<td>48</td>
<td>0</td>
<td>48</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Mahmud 2020 (6)</td>
<td>0</td>
<td>183</td>
<td>3</td>
<td>180</td>
<td>4.9%</td>
<td>0.14 [0.01, 2.70]</td>
</tr>
<tr>
<td>Mohan 2021 (7)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>52</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Petkov 2021 (8)</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>50</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Ravikir 2021 (9)</td>
<td>0</td>
<td>55</td>
<td>4</td>
<td>57</td>
<td>5.1%</td>
<td>0.12 [0.01, 2.09]</td>
</tr>
<tr>
<td>Rezi 2020 (10)</td>
<td>1</td>
<td>35</td>
<td>0</td>
<td>34</td>
<td>4.3%</td>
<td>2.92 [0.12, 69.20]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>670</td>
<td>576</td>
<td>19.3%</td>
<td></td>
<td>0.25 [0.05, 1.10]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variability: Tau^2 = 0.03; Chi^2 = 3.04, df = 3 (P = 0.39); I^2 = 1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.84 (P = 0.07)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.2 Severe covid-19

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Ivermectin Total</th>
<th>Control Events</th>
<th>Control Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elgazzar 2020 (11)</td>
<td>2</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>17.4%</td>
<td>0.10 [0.02, 0.42]</td>
</tr>
<tr>
<td>Hashim 2020 (12)</td>
<td>0</td>
<td>11</td>
<td>6</td>
<td>22</td>
<td>5.5%</td>
<td>0.15 [0.01, 2.40]</td>
</tr>
<tr>
<td>Okurmus 2021 (13)</td>
<td>6</td>
<td>36</td>
<td>9</td>
<td>45</td>
<td>32.3%</td>
<td>0.36 [0.22, 1.38]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>147</td>
<td>152</td>
<td>55.2%</td>
<td></td>
<td>0.24 [0.06, 0.95]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>8</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variability: Tau^2 = 0.84; Chi^2 = 4.87, df = 2 (P = 0.09); I^2 = 59%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 2.04 (P = 0.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.2.3 Mild, moderate and severe covid-19

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Ivermectin Total</th>
<th>Control Events</th>
<th>Control Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niaee 2020 (14)</td>
<td>4</td>
<td>120</td>
<td>11</td>
<td>60</td>
<td>25.5%</td>
<td>0.18 [0.06, 0.55]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>120</td>
<td>60</td>
<td>25.5%</td>
<td></td>
<td>0.18 [0.06, 0.55]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variability: Not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 3.03 (P = 0.002)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total (95% CI): 937 / 788 100.0% 0.25 [0.13, 0.48]

Total events: 13 / 57

Variability: Tau^2 = 0.15; Chi^2 = 8.33, df = 7 (P = 0.30); I^2 = 16%

Test for overall effect: Z = 4.07 (P < 0.0001)

Test for subgroup differences: Chi^2 = 0.14, df = 2 (P = 0.93), I^2 = 0%

Footnotes

1. IVI 12mg x 5 days (24 pts) or IVI 12 mg + doxy x 5 days (24 pts)
2. IVI 6mg–12mg every 84 hrs for 2 wks; vs lepinaivir/ritonavir
3. IVI 0.4mg/kg single dose
4. IVI up to 24 mg daily for 4 days vs HCQ
5. IVI 0.2mg/kg x 2–3 days + Doxy 100 mg BID x 10 days
6. IVI 6mg once + Doxy 100 mg x 5 days
7. IVI 12mg or 24 mg single dose
8. IVI 0.4mg/kg x 3 days
9. IVI 12 mg x 2 days
10. IVI 0.2mg/kg single dose
11. IVI up to 24 mg daily for 4 days vs HCQ
12. IVI 0.2mg/kg x 2–3 days + Doxy 100 mg BID x 10 days
13. IVI 0.2mg/kg x 5 days (both arms received HCQ, favipiravir, azithromycin)
14. IVI 0.2mg/kg to 400 μg/kg (1 to 3 doses) vs HCQ

Favours ivermectin | **Favours control**
Forest plot: Death due to any cause (excluding high ROB trials)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Control Events</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1 Mild to moderate covid-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>0</td>
<td>45</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Babaloo 2020 (2)</td>
<td>0</td>
<td>42</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Charcoy 2020 (3)</td>
<td>0</td>
<td>12</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Elgazzar 2020 (4)</td>
<td>0</td>
<td>100</td>
<td>9.6% 0.11 (0.01, 2.04)</td>
</tr>
<tr>
<td>Mahmoud 2020 (5)</td>
<td>0</td>
<td>183</td>
<td>9.4% 0.14 (0.01, 2.70)</td>
</tr>
<tr>
<td>Mohan 2021 (6)</td>
<td>0</td>
<td>100</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Petkov 2021 (7)</td>
<td>0</td>
<td>50</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Ravikirti 2021 (8)</td>
<td>0</td>
<td>55</td>
<td>9.7% 0.12 (0.01, 2.09)</td>
</tr>
<tr>
<td>Real 2020 (9)</td>
<td>1</td>
<td>35</td>
<td>8.6% 2.92 (0.12, 69.20)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>622</td>
<td>528</td>
<td>37.3% 0.25 (0.05, 1.10)</td>
</tr>
<tr>
<td>Total events</td>
<td>1</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau² = 0.03; Chi² = 3.04, df = 3 (P = 0.39); I² = 1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 1.84 (P = 0.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.2 Severe covid-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgazzar 2020 (10)</td>
<td>2</td>
<td>100</td>
<td>18.3% 0.10 (0.02, 0.42)</td>
</tr>
<tr>
<td>Fonseca 2021 (11)</td>
<td>12</td>
<td>52</td>
<td>23.8% 1.06 (0.58, 1.94)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>152</td>
<td>215</td>
<td>42.0% 0.35 (0.03, 4.29)</td>
</tr>
<tr>
<td>Total events</td>
<td>14</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau² = 2.96; Chi² = 10.45, df = 1 (P = 0.001); I² = 90%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 0.82 (P = 0.41)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3.3 Mild, moderate and severe covid-19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niaee 2020 (12)</td>
<td>4</td>
<td>120</td>
<td>20.6% 0.18 (0.06, 0.55)</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>120</td>
<td>60</td>
<td>20.6% 0.18 (0.06, 0.55)</td>
</tr>
<tr>
<td>Total events</td>
<td>4</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not applicable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect:</td>
<td>Z = 3.03 (P = 0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>894</td>
<td>803</td>
<td>100.0% 0.28 (0.09, 0.88)</td>
</tr>
<tr>
<td>Total events</td>
<td>19</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau² = 1.33; Chi² = 19.44, df = 6 (P = 0.003); I² = 69%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for subgroup differences: Chi² = 0.27, df = 2 (P = 0.87), I² = 0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
(1) IVM 12mg x 5 days (24 pts) or IVM 12 mg + doxy x 5 days (24 pts)
(2) IVM 6mg–12mg every 84 hrs for 2 wks; vs lepinavir/ritonavir
(3) IVM 0.4mg/kg single dose
(4) IVM up to 24 mg daily for 4 days vs HCQ
(5) IVM 6mg once + Doxy 100 mg x 5 days
(6) IVM 12mg or 24 mg single dose
(7) IVM 0.4mg/kg x 3 days
(8) IVM 12 mg x 2 days
(9) IVM 0.2mg/kg single dose
(10) IVM up to 24 mg daily for 4 days vs HCQ
(11) IVM 14 mg x 3 days vs HCQ x 5 days or CO x 5 days
(12) IVM 0.2mg/kg to 400 µg/kg (1 to 3 doses) vs HCQ
Forest plot: Death due to any cause (excluding trials with active controls)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Control Events</th>
<th>Total Events</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1 Mild to moderate covid-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>0 45</td>
<td>0 23</td>
<td>45</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaccour 2020 (2)</td>
<td>0 12</td>
<td>0 12</td>
<td>12</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hashim 2020 (3)</td>
<td>0 48</td>
<td>0 48</td>
<td>48</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahmod 2020 (4)</td>
<td>0 183</td>
<td>3 180</td>
<td>183</td>
<td>0.14 (0.01, 2.70)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mohan 2021 (5)</td>
<td>0 100</td>
<td>0 52</td>
<td>100</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petkov 2021 (6)</td>
<td>0 50</td>
<td>0 50</td>
<td>50</td>
<td>Not estimable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravikir 2021 (7)</td>
<td>1 55</td>
<td>4 57</td>
<td>56</td>
<td>0.12 (0.01, 2.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rezai 2020 (8)</td>
<td>1 35</td>
<td>3 34</td>
<td>36</td>
<td>2.92 [0.12, 69.20]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>528</td>
<td>456</td>
<td>984</td>
<td>0.33 [0.05, 2.46]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>7</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau^2 = 0.77, Chi^2 = 2.66, df = 2 (P = 0.26); I^2 = 25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.08 (P = 0.28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4.2 Severe covid-19						
Hashim 2020 (9)	0 11	6 22	17	0.15 [0.01, 2.40]		
Okumu 2021 (10)	6 36	9 30	45	0.56 (0.22, 1.38)		
Subtotal (95% CI)	**47**	**52**	**99**	**0.49 [0.21, 1.16]**		
Total events	6	15	21			
Heterogeneity: Tau^2 = 0.00, Chi^2 = 0.87, df = 1 (P = 0.35); I^2 = 0%						
Test for overall effect: Z = 1.62 (P = 0.11)						

1.4.3 Mild, moderate and severe covid-19						
Subtotal (95% CI)	**0**	**0**	**0**	**Not estimable**		
Total events	0	0	0			
Heterogeneity: Not applicable						
Test for overall effect: Not applicable						

| Total (95% CI) | 575 | 508 | 100.0% | 0.45 [0.21, 0.98] | | |
| Total events | 7 | 22 | 29 | | | |
| Heterogeneity: Tau^2 = 0.00, Chi^2 = 3.80, df = 4 (P = 0.43); I^2 = 0% |
| Test for overall effect: Z = 2.02 (P = 0.04) |
| Test for subgroup differences: Chi^2 = 0.12, df = 1 (P = 0.73); I^2 = 0% |

Footnotes
(1) IVM 12mg x 5 days (24 pts) or IVM 12 mg + doxy x 5 days (24 pts)
(2) IVM 0.4mg/kg single dose
(3) IVM 0.2mg/kg x 2-3 days + Doxy 100 mg BID x 10 days
(4) IVM 6mg once + Doxy 100 mg x 5 days
(5) IVM 12mg or 24 mg single dose
(6) IVM 0.4mg/kg x 3 days
(7) IVM 12 mg x 2 days
(8) IVM 0.2mg/kg single dose
(9) IVM 0.2mg/kg x 2-3 days + Doxy 100 mg BID x 10 days
(10) IVM 0.2mg/kg x 5 days (both arms received HCQ, favipiravir, azithromycin)
Forest plot: Admission to ICU

Study or Subgroup Ivermectin Events Total Control Events Total Weight Risk Ratio M-H, Random, 95% CI Risk Ratio M-H, Random, 95% CI
--- ---------- ------ ------ ------ ------ ------------ ------------- ------------- -------------
Fonseca 2021 (1) 15 52 25 115 80.8% 1.33 [0.77, 2.30]
Ravikirti 2021 (2) 5 55 6 57 19.2% 0.86 [0.28, 2.67]
Total (95% CI) 107 172 100.0% 1.22 [0.75, 2.00]
Total events 20 31
Heterogeneity: Tau² = 0.00; Chi² = 0.46, df = 1 (P = 0.50); I² = 0%
Test for overall effect: Z = 0.79 (P = 0.43)

Footnotes
(1) IVM 14 mg x 3 days vs HCQ x 5 days or CQ x 5 days
(2) IVM 12 mg x 2 days; data for “invasive ventilation”

Forest plot: Need for mechanical ventilation

Study or Subgroup Ivermectin Events Total Control Events Total Weight Risk Ratio M-H, Random, 95% CI Risk Ratio M-H, Random, 95% CI
--- ---------- ------ ------ ------ ------ ------------ ------------- ------------- -------------
Fonseca 2021 (1) 12 52 24 115 68.2% 1.11 [0.60, 2.04]
Mohan 2021 (2) 0 100 0 52 Not estimable
Ravikirti 2021 (3) 1 33 5 57 31.8% 0.21 [0.03, 1.72]
Total (95% CI) 207 224 100.0% 0.65 [0.14, 3.10]
Total events 13 29
Heterogeneity: Tau² = 0.84; Chi² = 2.32, df = 1 (P = 0.13); I² = 57%
Test for overall effect: Z = 0.54 (P = 0.59)

Footnotes
(1) IVM 14 mg x 3 days vs HCQ x 5 days or CQ x 5 days
(2) IVM 12mg or 24mg
(3) IVM 12 mg x 2 days; data for “invasive ventilation”
Forest plot: Recovery time to -ve PCR

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>1.6.3 Mild to moderate disease</td>
<td>9.7</td>
<td>4.5</td>
<td>24</td>
<td>17.7</td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>11.5</td>
<td>4.4</td>
<td>24</td>
<td>12.7</td>
</tr>
<tr>
<td>Babalea 2020 (3)</td>
<td>5.33</td>
<td>3.12</td>
<td>40</td>
<td>9.15</td>
</tr>
<tr>
<td>Chowdhury 2020 (4)</td>
<td>8.93</td>
<td>1.277</td>
<td>63</td>
<td>9.33</td>
</tr>
<tr>
<td>Hashim 2020 (5)</td>
<td>6.14</td>
<td>2.4</td>
<td>48</td>
<td>13.66</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>196</td>
<td>146</td>
<td>89.6%</td>
<td>-3.11 [-6.12, -0.10]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 10.35; Chi² = 47.92, df = 4 (P < 0.000001); I² = 92%
Test for overall effect: Z = 2.02 (P = 0.04)

Forest plot: Recovery time (clinical)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>1.7.1 Outpatient treatment</td>
<td>5.93</td>
<td>1.29</td>
<td>60</td>
<td>6.99</td>
</tr>
<tr>
<td>Chowdhury 2020 (1)</td>
<td>5.31</td>
<td>2.48</td>
<td>32</td>
<td>6.33</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>92</td>
<td>84</td>
<td>100.0%</td>
<td>-1.06 [-1.63, -0.49]</td>
</tr>
</tbody>
</table>

Heterogeneity: Tau² = 0.00; Chi² = 0.00, df = 1 (P = 0.97); I² = 0%
Test for overall effect: Z = 5.61 (P = 0.00001)

Footnotes
1. IVM 2 mg daily x 5 days
2. IVM 2 mg + doxy 200 mg stat then 100 mg BD x 4 days
3. IVM 1mg - 12mg every 48 hrs for 2 wks vs lopinavir/ritonavir
4. IVM 200 mcg/kg single dose + doxy 100 mg x 10 days vs HCQ and azithromycin
5. IVM 0.2mg/kg x 2 + Doxy 100 mg BD x 10 days
6. IVM 0.2mg/kg x 2 + Doxy 100 mg BD x 10 days

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Total</td>
<td>Mean</td>
</tr>
<tr>
<td>1.7.2 Inpatient (mild to moderate)</td>
<td>6.34</td>
<td>2.4</td>
<td>48</td>
<td>13.66</td>
</tr>
<tr>
<td>Hashim 2020</td>
<td>48</td>
<td>48</td>
<td>100.0%</td>
<td>-7.32 [-9.25, -5.39]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>48</td>
<td>48</td>
<td>100.0%</td>
<td>-7.32 [-9.25, -5.39]</td>
</tr>
</tbody>
</table>

Heterogeneity: Not applicable
Test for overall effect: Z = 7.42 (P < 0.00001)

Footnotes
1. IVM 200 mcg/kg single dose + doxy 100 mg x 10 days vs HCQ and azithromycin
2. IVM 200 mcg/kg single dose
3. IVM 200 ug/kg x 2 + Doxy 100 mg BD x 10 days

Test for subgroup differences: Chi² = 37.70, df = 2 (P < 0.00001); I² = 94.7%
Forest plot: Improvement

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin</th>
<th>Control</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.1 Mild to moderate covid-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>14 23</td>
<td>4 11</td>
<td>1.3%</td>
<td>1.67 [0.72, 3.91]</td>
<td>[]</td>
</tr>
<tr>
<td>Ahmed 2020 (2)</td>
<td>17 22</td>
<td>5 12</td>
<td>1.9%</td>
<td>1.85 [0.91, 3.76]</td>
<td>[]</td>
</tr>
<tr>
<td>Chackar 2020 (3)</td>
<td>16 23</td>
<td>15 23</td>
<td>5.0%</td>
<td>1.07 [0.69, 1.65]</td>
<td>[]</td>
</tr>
<tr>
<td>Mahmoud 2020 (4)</td>
<td>111 183</td>
<td>80 180</td>
<td>23.5%</td>
<td>1.36 [1.12, 1.67]</td>
<td>[]</td>
</tr>
<tr>
<td>Elgazzar 2020 (5)</td>
<td>99 100</td>
<td>74 100</td>
<td>68.2%</td>
<td>1.34 [1.19, 1.51]</td>
<td>[]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>353</td>
<td>528</td>
<td>100.0%</td>
<td>1.34 [1.22, 1.48]</td>
<td>[]</td>
</tr>
<tr>
<td>Total events</td>
<td>257</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00, Chi² = 2.22, df = 4 (P = 0.70); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 5.91 (P < 0.00001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for subgroup differences: Chi² = 8.70, df = 1 (P = 0.003); I² = 88.5%

Features:
1. IVM 12mg daily x 5 days
2. IVM 12mg x 5 + doxy 200mg stat then 100 mg BD x 4 days
3. IVM 12 mg at 0, 12, and 24 hours
4. IVM 6mg once + Doxy 100 mg x 5 days
5. IVM up to 24 mg daily for 4 days. Control group received hydroxychloroquine
6. IVM up to 24 mg daily for 4 days. Control group received hydroxychloroquine

Forest plot: Deterioration

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin</th>
<th>Control</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Events Total</td>
<td>Events Total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.12.1 Mild to moderate covid-19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chackar 2020 (1)</td>
<td>0 12</td>
<td>0 12</td>
<td></td>
<td>Not estimable</td>
<td>[]</td>
</tr>
<tr>
<td>Elgazzar 2020 (2)</td>
<td>1 100</td>
<td>22 100</td>
<td>12.3%</td>
<td>0.05 [0.01, 0.33]</td>
<td>[]</td>
</tr>
<tr>
<td>Hashim 2020 (3)</td>
<td>0 48</td>
<td>0 48</td>
<td></td>
<td>Not estimable</td>
<td>[]</td>
</tr>
<tr>
<td>Mahmoud 2020 (4)</td>
<td>16 183</td>
<td>32 180</td>
<td>30.5%</td>
<td>0.49 [0.28, 0.86]</td>
<td>[]</td>
</tr>
<tr>
<td>Mohan 2021 (5)</td>
<td>5 80</td>
<td>5 45</td>
<td>21.1%</td>
<td>0.56 [0.17, 1.84]</td>
<td>[]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>423</td>
<td>385</td>
<td>63.9%</td>
<td>0.31 [0.10, 1.02]</td>
<td>[]</td>
</tr>
<tr>
<td>Total events</td>
<td>22</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.72; Chi² = 6.35, df = 2 (P = 0.04); I² = 69%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.92 (P = 0.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test for subgroup differences: Chi² = 0.63, df = 2 (P = 0.73); I² = 0%

Features:
1. IVM 0.4mg/kg single dose
2. IVM up to 24 mg daily for 4 days. Control group received hydroxychloroquine
3. IVM 200μg/kg + Doxy 100 mg BD x 10 days
4. IVM 6mg once + Doxy 100 mg x 5 days
5. IVM 12mg or 24mg

Forest plot:
- **Improvement**
- **Deterioration**

Total events:
- Improvement: 257
- Deterioration: 22

Heterogeneity:
- Improvement: Tau² = 0.00, Chi² = 2.22, df = 4 (P = 0.70); I² = 0%
- Deterioration: Tau² = 0.72; Chi² = 6.35, df = 2 (P = 0.04); I² = 69%

Test for overall effect:
- Improvement: Z = 5.91 (P < 0.00001)
- Deterioration: Z = 1.92 (P = 0.05)
Forest plot: Length of hospital stay

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Favours Ivermectin</th>
<th>Control</th>
<th>Mean Difference</th>
<th>Mean Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean SD Total</td>
<td>Mean SD Total</td>
<td>IV, Random, 95% CI</td>
<td>IV, Random, 95% CI</td>
</tr>
<tr>
<td>Ahmed 2020 (1)</td>
<td>9.6 3.2 23</td>
<td>9.7 4.7 12</td>
<td>-0.10 [-3.06, 2.86]</td>
<td></td>
</tr>
<tr>
<td>Ahmed 2020 (2)</td>
<td>10.1 3.8 22</td>
<td>9.7 4.7 11</td>
<td>0.40 [-2.80, 3.60]</td>
<td>0.13 [-2.04, 2.30]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>19.7 3.2 45</td>
<td>19.4 4.7 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; Chi² = 0.01; df = 1 (P = 0.91); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.70 (P = 0.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
(1) IVM 12 mg daily x 5 days
(2) IVM 12mg + doxy 200 mg stat then 100 mg BD x 4 days

Forest plot: Admission to hospital

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events Total</th>
<th>Control Events Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raad 2021 (1)</td>
<td>0 50</td>
<td>3 50</td>
<td>0.14 [0.01, 2.70]</td>
<td></td>
</tr>
<tr>
<td>Schwartz 2021 (2)</td>
<td>0 49</td>
<td>2 45</td>
<td>0.18 [0.01, 3.73]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>99 95</td>
<td>100.0%</td>
<td>0.16 [0.02, 1.32]</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>0 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.00; Chi² = 0.01; df = 1 (P = 0.91); I² = 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: Z = 1.70 (P = 0.09)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Footnotes:
(1) IVM 0.2mg/kg single dose
(2) IVM 12 or 15mg x 3days
Forest plot. Severe adverse events

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events</th>
<th>Control Events</th>
<th>Weight</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.14.1 Single dose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaccour 2020 (1)</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Mohan 2021 (2)</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>112</td>
<td>64</td>
<td>0</td>
<td>Not estimable</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Not applicable
Test for overall effect: Not applicable

1.14.2 IVM multi-dose					
Ahmed 2020 (3)	0	23	0	Not estimable	
Babaloa 2020 (4)	0	42	0	Not estimable	
Krelewiecki 2020 (5)	1	30	0	31.5% 1.55 [0.07, 35.89]	
Petkov 2021 (6)	0	50	0	Not estimable	
Schwartz 2021 (7)	0	49	0	Not estimable	
Subtotal (95% CI)	194	141	0	31.5% 1.55 [0.07, 35.89]	
Total events	1	0	0		

Heterogeneity: Not applicable
Test for overall effect: Z = 0.27 (P = 0.79)

1.14.3 IVM plus other drugs					
Ahmed 2020 (6)	0	22	0	Not estimable	
Mahmoud 2020 (9)	2	183	0	33.9% 4.92 [0.24, 101.74]	
Okumus 2021 (10)	2	36	0	34.6% 4.19 [0.21, 84.03]	
Subtotal (95% CI)	241	222	0	68.5% 4.54 [0.54, 38.21]	
Total events	4	0	0		

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.01, df = 1 (P = 0.94); I^2 = 0%
Test for overall effect: Z = 1.39 (P = 0.16)

Total (95% CI) 547 427 100.0% 3.23 [0.55, 18.87]
Total events 5 0

Heterogeneity: Tau^2 = 0.00; Chi^2 = 0.32, df = 2 (P = 0.85); I^2 = 0%
Test for overall effect: Z = 1.30 (P = 0.19)
Test for subgroup differences: Chi^2 = 0.31, df = 1 (P = 0.58), I^2 = 0%

Footnotes
(1) IVM 0.4mg/kg single dose
(2) IVM 12mg or 24mg
(3) IVM 12mg x 5 days
(4) IVM 6mg-12mg every 84 hrs for 2 wks
(5) IVM 0.6mg/kg x 5 days
(6) 0.4mg/kg x 5 days
(7) IVM 12 or 15mg x 3 days
(8) IVM 12mg = doxy x 5 days
(9) IVM 6mg once = Doxy 100 mg x 5 days
(10) IVM 0.2mg/kg x 5 days (both arms received HCQ, favipiravir, azithromycin)
Forest plot. covid-19 infection

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events Total</th>
<th>Control Events Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chia 2021 (1)</td>
<td>4 117</td>
<td>25 117</td>
<td>0.16 [0.06, 0.45]</td>
</tr>
<tr>
<td>Elgazzar 2020 (2)</td>
<td>2 100</td>
<td>10 100</td>
<td>0.20 [0.04, 0.89]</td>
</tr>
<tr>
<td>Shehman 2020 (3)</td>
<td>15 203</td>
<td>59 101</td>
<td>0.13 [0.08, 0.21]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>420 318</td>
<td>100.0%</td>
<td>0.14 [0.09, 0.21]</td>
</tr>
</tbody>
</table>

Total events: 21 94

Heterogeneity: Tau² = 0.00, Chi² = 0.44, df = 2 (P = 0.80); i² = 0%
Test for overall effect: Z = 8.86 (P < 0.00001)

Footnotes:
1. IVM 12 mg weekly + iota-Carrageenan 6 sprays/day
2. IVM up to 24mg weekly depending on weight x 2 doses
3. IVM up to 24 mg depending on weight, given in 2 doses 72 hours apart

Forest plot. Severe adverse events (prophylaxis)

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Ivermectin Events Total</th>
<th>Control Events Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chia 2021 (1)</td>
<td>0 117</td>
<td>0 117</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Shehman 2020 (2)</td>
<td>0 203</td>
<td>0 101</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>320 218</td>
<td>218</td>
<td>Not estimable</td>
</tr>
</tbody>
</table>

Total events: 0 0

Test for overall effect: Not applicable

Footnotes:
1. 12 mg (drops) and iota-carrageena 6 sprays daily
2. IVM up to 24 mg depending on weight, given in 2 doses 72 hours apart
ANNEX 2. REAL WORLD EVIDENCE

Fortaleza (Brazil)

May 5 2020. Pharmacies reported increases in IVM demand.
https://www.vitamedic.ind.br/2020/05/05/ivermectina/

May 15 2020. Regional Health care institution included IVM in the treatment protocol.
Belém (Brazil)

A. All-cause deaths

B. COVID-19 Incidence

C. COVID-19 Fatalities

D. Community mobility

May 3 2020. Pharmacies increased process and reported increases in IVM demand.

May 12 2020. Regional Health care institution included IVM in the treatment protocol.

Macapá (Brazil)

A. All-cause deaths

B. COVID-19 Incidence

C. COVID-19 Fatalities

D. Community mobility

Chiapas (México)

A. All-cause deaths

B. COVID-19 Incidence

C. COVID-19 Fatalities

D. Community mobility

Jun 17 2020. MDs prescribe IVM as a COVID treatment

Jul 2 2020. Local Government started campaign detecting patients and early treating with IVM
Tlaxcala (México)

July 7 2020 Local government embraced IVM as their official COVID treatment

Loreto (Peru)

IVM treatments started in late April
Source: Sharp reductions in COVID-19 case fatalities and excess deaths in Peru in close time conjunction, state-by-state, with ivermectin treatments
Ucayali (Peru)

IVM treatments started in early May
Source: Sharp reductions in COVID-19 case fatalities and excess deaths in Peru in close time conjunction, state-by-state, with ivermectin treatments

Cusco (Perú)

IVM treatments started in early mid August
Source: Sharp reductions in COVID-19 case fatalities and excess deaths in Peru in close time conjunction, state-by-state, with ivermectin treatments
Uttar Pradesh (India)

Aug 8, 2020. Uttar Pradesh embraces IVM as their treatment protocol
Sep 19, 2020. Doctors in Karnataka embraces IVM
Sep 20, 2020. Regional Health Authority

Sources:
Peru:
Data SINADEF – MINSA, https://cloud.minsa.gob.pe/s/NctBnHXDnqcGWAg/download
Centro Nacional de Epidemiologia, prevención y Control de Enfermedades – MINSA
https://www.datosabiertos.gob.pe/group/datos-abiertos-de-covid-19

Brazil:
Portal de Transparência do Registro Civil, https://transparencia.registrocivil.org.br
Marcelo Oliveira: https://github.com/capyvara
Painel de casos de doença pelo coronavírus 2019 (COVID-19) no Brasil pelo Ministério da Saúde
https://covid.saude.gov.br/

México:
Datos Abiertos Dirección General de Epidemiología https://www.gob.mx/salud/documentos/datos-abiertos-152127
Bases de datos del boletín estadístico sobre el exceso de mortalidad en México
https://www.datos.gob.mx/busca/dataset/bases-de-datos-del-boletin-estadistico-sobre-el-exceso-de-mortalidad-en-mexico

India:
COVID-19 India Org Data Operations Group
https://api.covid19india.org/
Google mobility:
https://www.google.com/covid19/mobility/
Annex 3. Ivermectin Prophylaxis and Treatment Protocols in Use

<table>
<thead>
<tr>
<th>Source</th>
<th>Prophylaxis (PrEP and PEP) healthcare workers (PrEP); contacts of confirmed cases (PEP)</th>
<th>Early outpatient treatment and/or "mild" case treatment</th>
<th>Ivermectin</th>
<th>adjuncts</th>
</tr>
</thead>
</table>
| **Marik et al.** | Day 1: 200 µg/kg
Day 3: 200 µg/kg
(PEP: per exposure)
(PrEP: 200 µg/kg fortnightly) | Day 1: 200 µg/kg
Day 2: 200 µg/kg
Days 3-5: same
(if not recovered) | Vit D3: ≤ 3000 IU qd
Vit C: 1 g bid
Zn: 50 mg qd
Quercetin: 250 mg qd
Melatonin: 6 mg qhs | Vit D3: 4000 IU qd
Vit C: 2 g bid or tds
Zn: 100 mg qd
Quercetin: 250 mg bid
Melatonin: 10 mg qhs
Aspirin: 325 mg qd |
| **Borody**
CDD | Day 1: 12 mg
(PrEP: Fortnightly) | Day 1: 12 mg
Day 4: 12 mg
Day 8: 12 mg | Doxycycline: 100 mg qd
(4 days)
Zn: unspecified | Doxycycline: 100 mg qd
(10 days)
Zn: unspecified |
| **McCullough et al.**
Baylor U., Dallas | No prophylaxis recommendations | 200-600 µg/kg
Days 1, 3, 5
or: qd 2-5 Days
Plus:
hydroxychloroquine
or: favipiravir
(dual antiviral policy) | Doxycycline: 100 mg bid
or:
Azithromycin 250 mg bid
Vit D3: 5000 IU qd
Vit C: 3 g qd
Zn: 50 mg qd
Quercetin: 500 mg bid |
| **Chesler**
Nursing Homes, Virginia | Day 1: 12 mg
Day 8: 12 mg
PEP: Immediate on first confirmed case | Day 1: 12 mg
Day 8: 12 mg | Doxycycline: 100 mg qd
(10 days)
Vit D3: unspecified
Vit C: unspecified
Zn: unspecified | Doxycycline: 100 mg qd
(10 days)
Vit D3: unspecified
Vit C: unspecified
Zn: unspecified
Dexamethasone: prn
Enoxaparin: prn |
| **Fareed**
Brawley Medical Center California | Day 1: 200 µg/kg
Day 3: 200 µg/kg | Day 1: 200 µg/kg
Day 3: 200 µg/kg | Vit D3: 4000 IU qd
Zn: 25 mg qd | Doxycycline: 100 mg qd
(5 days) |
<table>
<thead>
<tr>
<th>Source</th>
<th>Weekly: 50 µg/kg or: 200 µg/kg</th>
<th>Monthly: 200 µg/kg</th>
<th>Day 5: 200 µg/kg</th>
<th>Source Health Care Workers (PrEP); Contacts of Confirmed Cases (PEP)</th>
<th>Vit D3: 4000 IU qd</th>
<th>Zn: 25 mg qd</th>
<th>Vit C: unspecified</th>
<th>Multivitamins: unspecified</th>
<th>Quercetin: unspecified</th>
<th>Early outpatient treatment and/or “mild” case treatment</th>
<th>Ivermectin adjuncts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shouman, Zagazig U, Egypt</td>
<td>Day 1: 15 mg, 18 mg, 24 mg</td>
<td>Day 4: same</td>
<td>Hygiene measures</td>
<td>Not a treatment trial</td>
<td>Ivermectin</td>
<td>Iota-carageenan topical spray (daily)</td>
<td>Ivermectin adjuncts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chala et al., Tucuman, Argentina</td>
<td>Day 1: 12 mg oral solution repeat weekly</td>
<td>PrEP of healthcare workers</td>
<td>Iota-carageenan topical spray (daily)</td>
<td>Not a treatment trial</td>
<td>Ivermectin</td>
<td>Iota-carageenan topical spray (daily)</td>
<td>Ivermectin adjuncts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carvallo et al., Buenos Aires, Argentina</td>
<td>Day 1: 12 mg tablet repeat weekly</td>
<td>PrEP of healthcare workers</td>
<td>Iota-carageenan topical spray (daily)</td>
<td>Not a treatment trial</td>
<td>Ivermectin</td>
<td>Iota-carageenan topical spray (daily)</td>
<td>Ivermectin adjuncts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elgazzar et al., U. Benha, Egypt</td>
<td>Day 1: 400 µg/kg repeat weekly</td>
<td>PrEP healthcare workers; PEP contacts conf. cases</td>
<td>Hygiene measures</td>
<td>Day 1: 400 µg/kg</td>
<td>Azithromycin 500 mg qd (6 days)</td>
<td>Vit C: 1 g qd</td>
<td>Zn: 50 mg qd</td>
<td>Lactoferrin: 100 mg bid</td>
<td>Acetylcysteine: 200 mg tds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alam, Bangladesh Medical College Hospital</td>
<td>Day 1: 12 mg repeat monthly</td>
<td>PrEP healthcare workers</td>
<td>None specified</td>
<td>Not a treatment trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behera et al., All India Institute of Medical Sciences</td>
<td>Day 1: 300 µg/kg</td>
<td>Day 4: 300 µg/kg</td>
<td>Repeat monthly</td>
<td>PrEP healthcare workers</td>
<td>None specified</td>
<td>Not a treatment trial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX 4. OUTLINE OF THE BRITISH IVERMECTIN RECOMMENDATION DEVELOPMENT (BIRD) PROCESS

INTRODUCTION

A large body of evidence had accumulated on a drug called ivermectin for the prevention and treatment of covid-19 that required urgent review by health professionals and other stakeholders to determine whether it could inform clinical practice in the UK and elsewhere.

TARGET AUDIENCE

National and local policymakers, health care professionals, implementers, patients and the public.

RECOMMENDATION DEVELOPMENT METHODS

The recommendation on ivermectin for covid-19 was developed using the standard procedures for guideline development as described in the World Health Organization Handbook for Guideline Development. Briefly, these procedures include:

1. Identification of priority questions and outcomes;
2. Evidence retrieval and synthesis;
3. Assessment of the evidence;
4. Formulation of the recommendations; and
5. Planning for implementation, dissemination, impact evaluation and updating.

GROUPS INVOLVED IN THE PROCESS

1. The Steering Group

The role of the BIRD Steering Group was to co-ordinate the BIRD meeting, draft the recommendation for the stakeholder panel to review, assist in preparation of the finalized recommendations document, and manage its publication and dissemination. The members of the BIRD Steering Group are listed below (in alphabetical order):

Mr. Andrew Bryant (Statistician, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne)
Dr. Ketan Gajjar (Consultant Gynae-Oncologist, Obstetrics and Gynaecology, Nottingham City Hospital, Nottingham)
Dr. Tess Lawrie (Director of the Evidence-based Medicine Consultancy Ltd, Bath)
Dr. Claire Mock-Muñoz de Luna (Public Health Researcher, Evidence-based Medicine Consultancy Ltd, Bath)
Dr. Tina Peers (Consultant in Contraception and Reproductive Healthcare, Surrey)
Dr. Tony Tham (Consultant Gastroenterology, Ulster Hospital, Belfast)
2. The Recommendation Development Panel (RDP)

This international panel comprised invited health care professionals as well as patient and public representatives. All attendees were required to submit a declaration of interest before the meeting.

3. Technical Working Group (TWG)

The Technical Working Group comprised systematic reviewers and guidelines methodologists from the independent Evidence-Based Medicine Consultancy Ltd, Bath, and the University of Newcastle, Newcastle upon Tyne. The TWG also included a health economist and a data analyst, who produced real-world evidence graphs.

CONDUCT OF THE MEETING

For the purpose of transparency, the meeting was recorded and live-streamed. The public were invited to participate through a survey link on the streaming channel. With this online survey they were able to make judgements on the evidence – these data will be analysed and included in the final recommendation document.

The meeting was chaired by Professor Jim Neilson, Emeritus Professor of Obstetrics and Gynaecology at the University of Liverpool. Dr. Tess Lawrie presented the evidence and other relevant considerations on ivermectin for covid-19 infection in the form of a DECIDE evidence to decision (EtD) framework. The panel considered evidence and other relevant considerations for each of the following criteria:

- **Effects:** What are the benefits and harms associated with ivermectin for covid-19?
- **Values:** What importance do those affected assign to the outcomes associated with ivermectin?
- **Resources:** What are the resource implications of ivermectin implementation?
- **Equity:** What are the equity implications associated with ivermectin for covid-19?
- **Acceptability:** Will ivermectin be acceptable to key stakeholders, e.g. patients, their families and health care professionals?
- **Feasibility:** Will ivermectin be feasible to implement in terms of resource availability, infrastructure and training?

Using an electronic survey link, the panel made judgements on these different decision-making criteria, which were recorded in a summary table. Twelve judgements were made during the course of the BIRD proceedings. Statistician, Mr. Andrew Bryant presented a summary of the panel judgements. This summary informed the formulation of the draft recommendation.

FORMULATING THE RECOMMENDATION

Any of the following recommendations could have been made:

- A recommendation in favour of the use of ivermectin for covid-19
- A recommendation not in favour of the use of ivermectin for covid-19
A recommendation in favour of the use of ivermectin in certain contexts, such as a research context or specific populations or settings.

After the recommendation was made, a 30-minute panel discussion followed during which implementation and research gaps were considered.

DECLARATIONS OF INTEREST (DOI)

In line with the *WHO handbook for guideline development*, all those invited were asked to declare in writing any competing interests (academic, financial or other) they may have at the time of the invitation to participate in the BIRD meeting. They were asked to sign a DOI form and return it prior to the meeting for review by the Steering Group. If an individual was considered to have a substantial conflict of interest, for example, research grants or other financial interests from private industry, the Steering Group reserved the right to withdraw the invitation. No invitations were withdrawn.

DOCUMENT PREPARATION, REVIEW AND DISSEMINATION

Following the BIRD meeting, the Steering Group prepared a draft of the recommendation/s document with revisions to accurately reflect the deliberations and decisions of the panel. The draft recommendation document was sent electronically to the panel members for approval and suggestions. The document was also sent to 12 external health professionals to review. The revised final version of the document has been made freely available to all stakeholders. The Steering Group undertook to communicate and disseminate the recommendation as soon as possible in the interest of expediting implementation.
ANNEX 5. IVERMECTIN FOR PREVENTION AND TREATMENT OF COVID-19: SYSTEMATIC REVIEW METHODOLOGY

Objectives

To assess the effectiveness of ivermectin treatment among people with covid-19 infection (to address priority question 1) and as a prophylaxis among people at higher risk of covid-19 infection (to address priority question 2).

Safety will also be assessed in included randomised controlled trials (RCTs). However, since it is one of the World Health Organisation’s Essential Medicines (WHO 2019) and is considered safe for use in humans (Banerjee 2020; Navarro 2020; WHO 2018), no assessment will be made beyond included RCTS.

Methods

CRITERIA FOR CONSIDERING STUDIES FOR THIS REVIEW

TYPES OF STUDIES

Prespecified eligibility criteria is as follows:

Study design

- Randomised controlled trials (RCTs)
- Quasi-RCTs
- Cluster-RCTs

Minimum study duration

Any time frame.

TYPES OF PARTICIPANTS

- For research question 1: People with mild, moderate, severe or critical covid-19 infection.
- For research question 2: People at higher risk of covid-19 infection, such as frontline workers and covid-19 contacts.

Special populations of interest are healthcare and other frontline workers, the elderly, and those with pre-existing health conditions.
TYPES OF INTERVENTIONS

Intervention

- Oral ivermectin, administered as a minimum single dose of 6 mg.
 - Studies assessing ivermectin in combination with doxycycline or other medicines or supplements will be included.
 - Studies comparing different formulations, doses, and schedules of ivermectin will also be included.

Comparator(s)

- No ivermectin
 - placebo, or
 - another active treatment

TYPES OF OUTCOME MEASURES

PRIMARY OUTCOMES

For Question 1: Ivermectin treatment vs control/comparator:

- Death from any cause

For Question 2: Ivermectin prophylaxis vs control:

- covid-19 infection

SECONDARY OUTCOMES

For Question 1: Ivermectin treatment vs control/comparator:

- Time to PCR negativity, in days
- Time to clinical recovery, in days
- Admission to ICU
- Requiring mechanical ventilation
- Length of hospital stay, in days
- Admission to hospital
- Duration of mechanical ventilation
- Serious adverse events
- Improvement, as measured by investigators
• Deterioration, as measured by investigators

For Question 2: Ivermectin prophylaxis vs control:

• Admission to hospital
• Death from any cause
• Serious adverse events

Studies will be included in the review irrespective of whether they measured outcome data that are reported in a way that allows us to include them in meta-analysis. We will also include studies that are otherwise eligible but may not necessarily report on the review’s outcomes; these studies will be summarised in Characteristics of included studies tables. This will be done in case we miss any outcomes that are pertinent as new outcomes of importance may emerge given the changing nature of the pandemic. We will note any such analyses as post hoc and interpret accordingly.

We will also produce a brief economic commentary (BEC) to summarise the available economic evidence relating to: 1) ivermectin as treatment and 2) ivermectin as prophylaxis for covid-19 infection.

SEARCH METHODS FOR IDENTIFICATION OF STUDIES

ELECTRONIC SEARCHES

An information specialist, (JP) designed all of the searches and will conduct them. These were informed and verified by a content expert (TL) and were independently peer reviewed by (ANS). The Medline search strategy is presented in Appendix 1. The search strategies in other electronic databases will be adapted accordingly. The following electronic databases will be searched:

• Medline from 1946 (for completeness but nothing should appear until 2019 in theory)
• Embase from 1980
• CENTRAL (latest issue)
• Cochrane covid-19 Study Register
• Chinese databases

We will perform a supplementary search to identify economic evaluation studies. The search will be conducted in Medline and Embase and limited to published studies from November 2019 to capture studies conducted since the initial outbreak of SARS-CoV-2. The search strategies that will be used to identify economic evidence can be viewed in Appendix 2. Following current guidance (Aluko 2020), the reference lists of the studies included in the main review will also be examined for any relevant economic data.

SEARCHING OTHER RESOURCES

We will search the reference list of included studies, and of two other 2021 literature reviews that we are aware of on ivermectin (Kory 2021; Hill 2021). We have made initial contacts to experts in the field (Drs. Andrew Hill, Pierre Kory and Paul Marik) for information on new and emerging trial data but will follow these contacts up during the review process. This is a rapidly expanding evidence base so the number of trials are increasing quickly; as such, we will check for updates on ongoing trials regularly and perform hand searches as necessary.

DATA COLLECTION AND ANALYSIS

SELECTION OF STUDIES

Screening

All titles and abstracts retrieved by electronic searching will be downloaded to Endnote and duplicates will be removed. Two review authors (AB, TL, TD) with expertise in systematic reviewing will screen all titles and abstracts for eligibility. Full texts will also be reviewed by two reviewers (AB, TL, TD). Discrepancies will be resolved by consensus. Reasons for exclusion will be recorded for all studies excluded after full text review.

Inclusion of non-English language studies

Where possible, we will translate any reports of RCTs published in other languages than English.

DATA EXTRACTION AND MANAGEMENT

We will abstract data using a pilot form which will be trialled by two reviewers (TL, TD, AB or GG) to record the following:

- Study design (including methods, location, sites, funding, study author declaration of interests, inclusion/exclusion criteria)
- Setting: hospital inpatient, outpatient
- Participant characteristics: disease severity, age, gender, co-morbidities, smoking, occupational risk
- Intervention characteristics: dose and frequency of ivermectin
- Comparator characteristics: dose and frequency of comparator
- Risk of bias items (see below)
- Length of follow-up
- Outcomes (as above) including numbers in each arm, definitions, unit of measurements, etc.

Data on outcomes will be extracted as below:
• For dichotomous outcomes (i.e. death from any cause, SAEs, etc), we will extract the number of participants in each treatment arm and the number of participants assessed at endpoint, in order to estimate a risk ratio.
• For continuous outcomes (i.e. length of hospital stay), we will extract the final value and standard deviation of the outcome of interest and the number of participants assessed at endpoint in each treatment arm at the end of follow-up, in order to estimate the mean difference between treatment arms and its standard error.

If possible, we will extract data relevant to an intention-to-treat analysis, in which participants are analysed in groups to which they are assigned.

We will use Microsoft Excel to collate the data. If there is a conflict between data reported across multiple sources for a single study (e.g. between a published article and a trial registry record), we will email the authors for clarification. Differences between reviewers will be resolved by discussion.

ASSESSMENT OF RISK OF BIAS IN INCLUDED STUDIES

An assessment of risk of bias in each included RCT will be conducted by two reviewers (TL, TD, AB or GG) using the Cochrane risk of bias tool (Higgins 2019). Discrepancies will be resolved by discussion and, if necessary, involving a third reviewer. The risk of bias includes assessment of:

• sequence generation
• allocation concealment
• blinding (Assessment of blinding will be relevant to participants, health care personnel and outcome assessors)
• incomplete outcome data: We will record the proportion of participants whose outcomes were not reported at the end of the trial and will note whether loss to follow-up is not reported. We will code a satisfactory level of loss to follow-up for each outcome as:
 o Yes, if fewer than 20% of participants are lost to follow-up and reasons for loss to follow-up are similar in both treatment arms
 o No, if more than 20% of patients are lost to follow-up or reasons for loss to follow-up is different between treatment arms
 o Unclear if loss to follow-up is not reported
• selective reporting of outcomes
• other possible sources of bias

We will pay close scrutiny to unpublished reports and those of unpublished works and preprints that have not undergone formal peer review. If we can retrieve adequate information we will reach consensus in
either making an appropriate risk of bias judgement in each domain for that trial or exclude is sufficient doubt as to whether it is truly an RCT.

Results will be presented in both a risk of bias graph and a risk of bias summary. Results of meta-analyses will be interpreted in light of the findings with respect to risk of bias.

MEASURES OF TREATMENT EFFECT

We will use the following measures of the effect of treatment:

- For dichotomous outcomes (e.g. death from any cause, SAEs), we will use the risk ratio
- For continuous outcomes, we will use the mean difference (MD) or standardised mean difference (SMD) as appropriate. Continuous outcome data for length of hospital stay and time to recovery will be standardised to the same unit of measurement (i.e. days) so the need to use SMD is unlikely.

UNIT OF ANALYSIS ISSUES

We will consider interventions that comprised multiple doses of ivermectin as a single intervention and subgroup when necessary. None of our outcomes should be time-dependent (e.g. measured at a particular time point since these are relatively short term outcomes given nature of the virus and intention of the interventions).

We will also include cluster randomised controlled trials (cluster-RCTs). If the analysis accounts for the cluster design then a direct estimate of the desired treatment effect will be extracted e.g. RR plus 95% CI. If the analysis does not account for the cluster design, we will extract the number of clusters randomised to each intervention, the average cluster size in each intervention group and the outcome data, ignoring the cluster design, for all participants in each group. We will then use an external estimate of the intracluster coefficient (ICC) to estimate a design effect to inflate the variance of the effect estimate (Higgins 2019). It will then enter the data into RevMan 5.4 and combine the cluster randomised trials with individually randomised trials in the same meta-analysis.

DEALING WITH MISSING DATA

We will not impute missing data for any of the outcomes.

Contacting study authors

Authors of trials will be contacted for missing outcome data and for clarification on study methods, if possible, and for trial status for ongoing trials. We are aware that many studies will be in preprint form or not in peer review journals yet, so we will request full and transparent information on trial conduct including risk of bias confirmation as well as details on participants populations, interventions and
outcomes if necessary. We will follow Cochrane guidelines and recommendations on the need to include these data from unpublished studies to attempt to reduce publication bias and selective reporting of outcomes (Higgins 2019).

ASSESSMENT OF HETEROGENEITY

We will assess heterogeneity between studies by visual inspection of forest plots, by estimation of the I^2 statistic ($I^2 \geq 60\%$ was considered substantial heterogeneity) (Higgins 2003), by a formal statistical test to indicate statistically significant heterogeneity (Deeks 2001) and, if possible, by subgroup analyses (see below). If there is evidence of substantial heterogeneity, the possible reasons for this will be investigated and reported.

ASSESSMENT OF REPORTING BIASES

Funnel plots corresponding to meta-analysis of the primary outcome will be examined to assess the potential for small study effects if more than 10 trials are included in the analysis. If there is evidence of small-study effects, publication bias will be considered as only one of a number of possible explanations. If these plots suggest that treatment effects may not be sampled from a symmetric distribution, as assumed by the random effects model, sensitivity analyses will be performed using fixed effects models (Higgins 2019).

DATA SYNTHESIS

If sufficient clinically similar trials are available, we will pool their results in meta-analyses. We will use forest plots to display the results of the data syntheses.

- For dichotomous outcomes, the risk ratios will be pooled.
- For continuous outcomes, the MD or standardised mean difference (if appropriate) will be pooled

Trials with multiple treatment groups are discussed above, but in the unlikely event the ‘shared’ comparison group was divided into the number of treatment groups and comparisons made between each treatment group, the split comparison group were treated as independent comparisons.

We will meta-analyse data using the random effects model (DerSimonian 1986). Results will use Mantel-Haentzel method for weighting.

Where interventions differed to any degree or there was other substantial heterogeneity the results were reported in a narrative.
SUBGROUP ANALYSIS AND INVESTIGATION OF HETEROGENEITY

Where possible, we will perform subgroup analyses grouping trials by:

- Disease severity, namely mild, moderate, severe and any disease
- Inpatients vs outpatients
- Single dose vs multiple doses

SENSITIVITY ANALYSIS

We will perform sensitivity analysis by excluding trials which do not confirm adequate methods of randomisation for treatment assignment and allocation concealment. We will also perform sensitivity analysis for other aspects that may put a trial at high risk of bias and trials creating unexplained heterogeneity as outlined above in Assessment of heterogeneity and trials identified in subgroup analysis.

GRADE AND SUMMARY OF FINDINGS

All outcomes will be assessed independently by two review authors (TD and AB) using the GRADE approach (Schünemann 2019; GRADE 2020), which ranks the quality of the evidence. Results will be presented in a summary of findings table for treatment and prophylaxis outcomes (Appendix 4). Any differences will be resolved by discussion with the wider group. We will use Cochrane Effective Practice and Organisation of Care guidance to interpret the evidence (EPOC 2015).

BRIEF ECONOMIC COMMENTARY

We will develop a brief economic commentary (BEC) based on current methods guidance (Aluko 2020). The (BEC) will summarise the availability and core findings of full economic evaluations (cost-utility analyses, cost-effectiveness analyses and cost-benefit analyses) of ivermectin compared to alternatives regimens for 1) treatment and 2) prophylaxis of SARS-CoV-2. Findings from studies conducted in all settings globally will be considered.
ANNEX 6. BRITISH IVERMECTIN RECOMMENDATION DEVELOPMENT PARTICIPANTS

BIRD Steering Group (England, UK)

<table>
<thead>
<tr>
<th>Name</th>
<th>Role/Position</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theresa Lawrie</td>
<td>Director</td>
<td>Evidence-based Medicine Consultancy Ltd, Bath, United Kingdom</td>
</tr>
<tr>
<td>Andrew Bryant</td>
<td>Statistician</td>
<td>Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom</td>
</tr>
<tr>
<td>Ketan Gajjar</td>
<td>Consultant Gynaec-Oncologist</td>
<td>Obstetrics and Gynaecology, Nottingham City Hospital, Nottingham, United Kingdom</td>
</tr>
<tr>
<td>Scott Mitchell</td>
<td>Associate Specialist</td>
<td>Emergency Department, Princess Elizabeth Hospital, State of Guernsey</td>
</tr>
<tr>
<td>Tina Peers</td>
<td>Consultant in Contraception and Reproductive Healthcare</td>
<td>Surrey, United Kingdom</td>
</tr>
<tr>
<td>Tony Tham</td>
<td>Consultant Gastroenterology</td>
<td>Ulster Hospital, Belfast, United Kingdom</td>
</tr>
<tr>
<td>Claire Mock-Muñoz de Luna</td>
<td>Doctor in Public Health</td>
<td>Research Associate, Evidence-based Medicine Consultancy Ltd, Bath, United Kingdom</td>
</tr>
</tbody>
</table>

BIRD Technical Working Group (England, UK)

<table>
<thead>
<tr>
<th>Name</th>
<th>Role/Position</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therese Dowswell</td>
<td>Research Associate</td>
<td>Cochrane Pregnancy and Childbirth, Department of Women’s and Children’s Health, University of Liverpool, Liverpool Women’s NHS Foundation Trust, Liverpool, United Kingdom</td>
</tr>
<tr>
<td>Edmund Fordham</td>
<td>Physicist</td>
<td>South-East Cambridge, England, United Kingdom</td>
</tr>
</tbody>
</table>
Andrew Bryant
Statistician
Faculty of Medical Sciences
Newcastle University
Newcastle upon Tyne
United Kingdom

Theresa Lawrie
Director of the Evidence-based Medicine Consultancy Ltd
Bath
United Kingdom

Mark Lawrie
Freelance Director and Editor
Non-executive Director
Evidence-Based Medicine Consultancy Ltd
Bath
United Kingdom

Isabella Rushforth
Volunteer Intern
Evidence-based Medicine Consultancy Ltd
Bath
United Kingdom

Rosamond Jones
Consultant Paediatrician, Retired
HART (Health Advocacy & Recovery Team)
United Kingdom

Deborah Waller
General Practitioner, Retired
NHS Primary Care
Oxford
England
United Kingdom

Christine Clark
Freelance Medical Writer
Pharmaceutical Consultant
Christine Clark Ltd
Greater Blackburn
England
United Kingdom

Marie Gerval
Medical Doctor
The Menopause Consultancy
Chelsea and Westminster NHS Foundation Trust
England
United Kingdom

Hector Eduardo Carvallo
Professor of Internal Medicine
Universidad Abierta Interamericana
Argentina

Jennifer Hibberd
Paediatric Dental Surgeon
Division of Dentistry
Department of Surgery
William Osler Health System
Toronto
Canada

Ira Bernstein
Family Physician, Lecturer
Department of Family and Community Medicine
University of Toronto
Canada

Gustavo Aguirre-Chang
Doctor of Medicine
Health and Work Management Systems
SAC (SIGESA SAC)
Peru

Biswa Mohan Padhy
Professor
Department of Pharmacology
All India Institute of Medical Sciences (AIIMS)
Bhubaneswar
India

Pierre Kory
Chief Medical Officer
Front Line COVID-19 Critical Care Alliance
United States of America

Olufemi Babalola
Professor and Principal Investigator
Department of Ophthalmology
Bingham University
Karu
Nigeria

Jose Luis Abreu Quinter
President
Dean
Institute of Higher Education
Spenta University
Mexico

Allan Landrito
Medical Doctor
City Health Department
Metro-Manila
The Philippines

Shashikanth Manikappa
Specialist Anaesthetist
Melbourne
Australia

Emma-May Chitty
Clinical Nurse Specialist
East Anglia’s Children’s Hospice
Cambridge
England
United Kingdom

Tau Braun
Executive Director
U.S. Counterterrorism and Emergency Management National Advisor and Trainer
BioChem Engineering
United States of America

Morimasa Yagisawa
Visiting Professor
Omura Satoshi Memorial Institute
Kitasato University
Tokyo
Japan

Geoffrey Taylor
Independent Researcher, Retired
Perth
Australia

Wendy Hoy
Professor of Medicine
Director of Centre for Chronic Disease
University of Queensland
Australia
Jill Rasmussen
Medical Doctor
Director of psi-napse
Independent Consultancy psi-napse
United Kingdom

Agnes Pinnel
Former Founder and CEO
Argint International Clinical Research
Hungary

Rebecca Hall
Medical Doctor
Covid Clinical Assessment Service
Glastonbury Surgery
England
United Kingdom

Robert Taylor
Medical Doctor
Frome Medical Practice
Frome
England
United Kingdom

Christopher Hughes
Appraiser
Medical Directorate
NHS England South (South East)
NHS England
Surrey
England
United Kingdom

Denise Kelly
PhD
Independent Researcher
Ireland

David Chesler
Medical Doctor
Internal Medicine, Women’s Health and Geriatric Care
Charlottesville Family Medicine
Charlottesville
West Virginia
United States of America

Vicky Hildreth
Medical Doctor
The Wall House Surgery
Reigate
Surrey
England
United Kingdom

Eunice Minford
Consultant General Surgeon
Antrim Hospital, NHSCT
Northern Ireland
United Kingdom

Arabella Onslow
Medical Doctor
Burnett Edgar Medical Centre
Barrow-in-Furness
England
United Kingdom

Abbi Lulsegged
Consultant Physician
Endocrinology and Diabetes Mellitus, General Medicine
Health 121 Ltd
London
England
United Kingdom
Seema Taylor
Detective Constable
Surrey Police
West Sussex
England
United Kingdom

Sarah Hill
Health Economist Research Associate
Population Health Sciences Institute
Faculty of Medical Sciences
Newcastle University
England
United Kingdom

Linda Rapson
Medical Doctor
Assistant Professor
Department of Family & Community Medicine
University of Toronto
Canada

Justus Hofmeyr
Professor
Associate Program Director
Faculty of Medicine
Obstetrics and Gynaecology
University of Botswana
Botswana

Michael McConville
Medical Doctor
Owner
Ballyhaise Medical Clinic
County Cavan
Ireland

Juan Chamie
Data Analyst
Cambridge, Massachusetts
United States of America

Martin Gill
Ear, Nose & Throat Specialist
Private Practise
Sandton
Johannesberg
South Africa

Shaun Hiu
Research Assistant, Biostatistician
Population Health Sciences Institute
Faculty of Medical Sciences
Newcastle University
Newcastle
England
United Kingdom

Jessica Peers
Nursing Student
University of Greenwich
London
England
United Kingdom

Geoffrey Taylor
Emeritus Professor
Faculty of Science
University of Melbourne
Melbourne
Australia

David Rose
Journalist
Daily Mail
England
United Kingdom

Robert Watkins
Contract Design Engineer/ Physicist
Department of Astrophysics
University of Oxford
United Kingdom

Gavin McKinley
Research Technician
Centre for Medicines Discovery
University of Oxford
England
United Kingdom

Gez Medinger
Filmmaker
Student Paramedic
University of Hertfordshire
England
United Kingdom

Jon Spiteri
Social Worker
Learning Disability LAC
Scottish Borders Social Services
Scotland
United Kingdom

Kenneth Finlayson
Research Associate
School of Community Health and Midwifery
Faculty of Health and Care
University of Central Lancashire
England
United Kingdom

Marc G. Wathelet
Consultant
Coronavirus Specialist
Freelance
Villers-la-Ville
Walloon Region
Belgium

Antoine Guérin de Montgareuil
Research Engineer, Renewables
France

Hannah Vowles
Professor of Architecture
Interim Head of School
Faculty of Arts, Design and Media
Birmingham City University
Birmingham
England
United Kingdom

Jon Rogers
Medical Doctor, Retired
Bristol
England
United Kingdom

Micheal Yeadon
Biochemist, Pharmacologist
Freelance Consultant
Surrey
England
United Kingdom

Mark Bradley
Patient Advocate
PeopleWith Limited
England
United Kingdom
Juliet Johnson
Health Campaigner
Digital Marketing
Amara Way
England
United Kingdom

Sally Harrison
Registered Nurse
Charity
Oxfordshire
England
United Kingdom

Roger Felber
CEO
Pathe Films
United Kingdom

Yasmin George
Orthodontics, Aesthetic and CEREC Dentistry
Confident Smiles
Oatlands Dental Lounge
Weybridge
Surrey
England
United Kingdom

Christopher Govan Street
Science and Mathematics Tutor
The Tutor Master
England
United Kingdom

Linda Rae
Health Advocate
Durham
England
United Kingdom

Margarita Reygan
Carers Governor
Central and Northwest London NHS Trust

Jane Green
Advocate, Volunteer Chair
Sussex Ehlers-Danlos and Hypermobility Support (SEDS)
England
United Kingdom

Ian Clayton
Legal Consultant
Durham
England
United Kingdom
ANNEX 7. DECLARATION OF INTERESTS OF PARTICIPANTS

<table>
<thead>
<tr>
<th>Name (with title)</th>
<th>Disclosure of interest</th>
<th>Conflict of interest and management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Jose Luis Abreu Quinter</td>
<td>None declared</td>
<td>None declared</td>
</tr>
<tr>
<td>Dr. Gustavo Aguirre-Chang</td>
<td>None declared</td>
<td>None declared</td>
</tr>
<tr>
<td>Prof. Olufemi Babalola</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Ira Bernstein</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Mark Bradley</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Tau Braun</td>
<td>Has a research company involved in non-medical and non-</td>
<td>Not considered serious enough to preclude participation</td>
</tr>
<tr>
<td></td>
<td>pharmaceutical solutions and strategies to covid amongst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>other diseases</td>
<td></td>
</tr>
<tr>
<td>Prof. Hector Eduardo Carvallo</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. David Chesler</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Emma-May Chitty</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Christine Clark</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Ian Clayton</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Roger Felber</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Kenneth Finlayson</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Yasmin George</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Marie Gerval</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Martin Gill</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Sharon Gray</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mrs. Jane Green</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Rebecca Hall</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mrs. Sally Harrison</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Name</td>
<td>Conflict of Interest</td>
<td>Applicability</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Dr. Jennifer Hibberd</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Vicky Hildreth</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Shaun Hiu</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Justus Hofmeyr</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Wendy Hoy</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Christopher Hughes</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Juliet Johnson</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Rosemond Jones</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Denise Kelly</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Pierre Kory</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Allan Landrito</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Michael McConville</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Abbi Lulsegged</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Shashikanth Manikappa</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Gavin McKinley</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Gez Medinger</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Eunice Minford</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Biswa Mohan Padhy</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Antoine Guérin de Montagneuil</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Emeritus Prof. Jim Neilson</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Arabella Onslow</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Jessica Peers</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Agnes Pinnel</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Linda Rae</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Linda Rapson</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Jill Rasmussen</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Name</td>
<td>Conflict of Interest</td>
<td>Participation Consideration</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ms. Margarita Reygan</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Jon Rogers</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. David Rose</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Jon Spiteri</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Mr. Chris Street</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Emeritus Prof. Geoffrey Taylor</td>
<td>A colleague of Prof Borody who promotes an ivermectin treatment pack</td>
<td>Not considered serious enough to preclude participation</td>
</tr>
<tr>
<td>Dr. Robert Taylor</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Ms. Seema Taylor</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Hannah Vowles</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Deborah Waller</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Marc Wathelet</td>
<td>Reviewer for EU Covid-related research proposals</td>
<td>Not considered serious enough to preclude participation</td>
</tr>
<tr>
<td>Dr. Robert Watkins</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Prof. Morimasa Yagisawa</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Dr. Michael Yeadon</td>
<td>None declared</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
ANNEX 8. SUMMARY OF BIRD RECOMMENDATION DEVELOPMENT PANEL JUDGEMENTS

Q1 - How substantial are the desirable anticipated effects of ivermectin compared with no ivermectin?

Q2 - How substantial are the undesirable anticipated effects of ivermectin compared with no ivermectin?
Q3 - In your view, what is the overall certainty of the evidence on the important outcomes associated with ivermectin?

Q4 - Does the balance between desirable and undesirable effects favour ivermectin or no ivermectin?
Q5 - Is there important uncertainty about, or variability in, how much people value the main outcomes associated with ivermectin?

Q6 - How costly are the resources required for ivermectin compared with no ivermectin?
Q7 - What is the certainty of the evidence on costs?

- No included studies
- Very low
- Low
- Moderate
- High

Q8 - How cost-effective is ivermectin compared with no ivermectin?

- Don't know
- Varies
- Favour no ivermectin
- Probably favours no ivermectin
- Does not favour ivermectin or no ivermectin
- Probably favours ivermectin
- Favour ivermectin
Q9 - What would be the impact of ivermectin on equity?

- Increased

Q10 - Would ivermectin be acceptable to health professionals, patients, families and other stakeholders?

- Probably Yes
- Yes
Q11 - Would ivermectin be feasible to implement?

- Don't know
- Varies
- No
- Probably No
- Probably Yes
- Yes

Q12 - Based on the evidence presented, do you think ivermectin should be recommended?

- We do not recommend the intervention
- We recommend considering the intervention only
 - in specific contexts
- We recommend considering the intervention only
 - with targeted monitoring and evaluation
- We recommend considering the intervention only
 - in the context of rigorous research
- We recommend the intervention
ANNEX 9: IVERMECTIN API SUPPLIERS

Ref Price $168/kg

China

SUZhou RYWay BIOTECH, Suzhou, China

RICHBERYL BIOTECH CO., LTD. OF RAOYANG COUNTY, China

Shandong Qilu King-Phar Pharmaceutical Co., Ltd., Jinan, China

ZHEJIANG APELOA KANGYU PHARMACEUTICAL CO. LTD, Hangzhou, China

Dalian Richon Chem. Co., Ltd, Dalian, China

HENGDIAN GROUP, Hangzhou, China

North China Pharmaceutical Co., Ltd., Shijiazhuang, China

Hebei Veyong Animal Pharmaceutical Co., Ltd, Shijiazhuang, China

HANGZHOU THINK CHEMICAL CO., LTD., Hangzhou, China

Zhejiang HISUN Pharmaceuticals Co., Ltd, Taizhou, China

Other than China

Jai Radhe Sales, Gujrat, India

Dr. Reddy’s Laboratories, India

SAMEX OVERSEAS, Gujrat, India

Athos Chemicals, Gujrat, India

Zydus Cadila (India)

Pharmaffiliates Analytical & Synthetics Ltd., Panchkula, India

5 List of suppliers kindly provided by Professor Satoshi Omura and colleagues of Kitasato University, Japan.
Hovione Farmaciencia, Lisboa, Portugal
Delta Synthetic Co., Ltd, New Taipei, Taiwan
Tecoland Co., Irvine CA, USA
MERCK & CO. INC., Whitehouse Station, NJ, USA

Others (API uncertain)
Galderma Laboratories LP, Fort Worth, TX, USA, SOOLANTRA
Arbor Pharmaceuticals, Atlanta, GA, USA
Licensed to Kaken Pharma.: ivermectin lotion (0.5%) for head lice;
Boehringer Ingelheim, Germany; Ivomec (veterinary)
Edenbridge Pharmaceuticals, Parsippany, NJ, USA; Generic tablets 3mg
Perrigo Company plc, Dublin, Ireland; topical cream
MedinCell S.A, Montpellier, France
Generic: Actavis, Bryant, Edenbridge, NuCare, Prasco, Taro
ANNEX 10. ENDORSEMENT OF THE BRITISHivermectin RECOMMENDATION*

G. Umberto Meduri, M.D.
Professor of Medicine
Division of Pulmonary, Critical Care, and Sleep Medicine
Memphis VA Medical Center (123)
1030 Jefferson Avenue
Suite room #CW444
Memphis TN 38104
United States of America

Fred Wagshul, MD
Pulmonologist & Med. Dir., Lung Center of America
Clinical Instructor, Wright State
University School of Medicine,
Dayton, Ohio
United States of America
FLCCC.net

Colleen Aldous, PhD
Professor of Medical Research
College of Health Sciences,
University of KwaZulu-Natal
Nelson R Mandela School of Medicine
719 Umbilo Rd
SCM laboratory, Main Building
Durban 4001
South Africa

Fahmida Shaik, MD
MBChB (Natal), MClinPharm (UKZN)
Research Clinician
Nelson R Mandela School of Medicine

Anisa Mosam, MD PhD
Associate Professor in Dermatology
Nelson R Mandela School of Medicine,
University of Kwazulu Natal,
Rm 327 3rd Floor, Main Building Medical
School, 719 Umbilo Rd,
Durban
South Africa

Soo Downe
Professor of Midwifery Studies
UCLan
Preston
PR1 2HE
United Kingdom
sdowne@uclan.ac.uk
Dr Lucy Kerr, MD
Sonimage Director
President of Kerr Institute - São Paulo, Brazil
Avenida Brigadeiro Luiz Antônio, 2504 - 2º andar
Jardim Paulista, 01402-000
São Paulo
Brazil

* These individuals were unable to attend the BIRD meeting on the 20th of February, 2021, and sent their endorsement of the recommendation via email. We continue to accept endorsements.